Fanello, S. R., Gori, I., Metta, G., and Odone, F. (2013).
Keep it simple and sparse: Real-time action recogni-
tion. J. Mach. Learn. Res., 14(1):2617–2640.
Farah, M. J., Wilson, K. D., Drain, H. M., and Tanaka, J. R.
(1995). The inverted face inversion effect in prosopag-
nosia: Evidence for mandatory, face-specific percep-
tual mechanisms. Vision Research, 35(14):2089 –
2093.
Gong, D. and Medioni, G. (2011). Dynamic manifold warp-
ing for view invariant action recognition. ICCV, pages
571–578.
Goren, C. C., Sarty, M., and Wu, P. Y. K. (1975). Visual fol-
lowing and pattern discrimination of face-like stimuli
by newborn infants. Pediatrics, 56(4):544–549.
Huang, C.-H., Yeh, Y.-R., and Wang, Y.-C. (2012a). Rec-
ognizing actions across cameras by exploring the cor-
related subspace. In ECCV, volume 7583 of Lecture
Notes in Computer Science, pages 342–351.
Huang, K., Zhang, Y., and Tan, T. (2012b). A discrimina-
tive model of motion and cross ratio for view-invariant
action recognition. IEEE Transactions on Image Pro-
cessing, 21(4):2187–2197.
Junejo, I. N., Dexter, E., Laptev, I., and Prez, P. (2011).
View-independent action recognition from temporal
self-similarities. IEEE Trans. Pattern Anal. Mach. In-
tell., 33(1):172–185.
Kanakogi, Y. and Itakura, S. (2011). Developmental corre-
spondence between action prediction and motor abil-
ity in early infancy. Nat.Commun., 2:341–.
Kuhlmeier, V. A., Troje, N. F., and Lee, V. (2010). Young
infants detect the direction of biological motion in
point-light displays. Infancy, 15(1):83–93.
Lewandowski, M., Makris, D., and Nebel, J.-C. (2010).
View and style-independent action manifolds for hu-
man activity recognition. In ECCV, volume 6316 of
Lecture Notes in Computer Science, pages 547–560.
Li, B., Camps, O. I., and Sznaier, M. (2012). Cross-view
activity recognition using hankelets. In CVPR, pages
1362–1369.
Li, R. and Zickler, T. (2012). Discriminative virtual views
for cross-view action recognition. In CVPR, pages
2855–2862.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. IJCV, 60:91–110.
Mahbub, U., Imtiaz, H., Roy, T., Rahman, S., and Ahad, A.
(2011). Action recognition from one example. Pattern
Recognition Letters.
Malgireddy, M. R., Inwogu, I., and Govindaraju, V. (2012).
A temporal bayesian model for classifying, detect-
ing and localizing activities in video sequences. In
CVPRW.
Metta, G., Sandini, G., Vernon, D., Natale, L., and Nori, F.
(2008). The icub humanoid robot: An open platform
for research in embodied cognition. In Proceedings of
the 8th Workshop on Performance Metrics for Intelli-
gent Systems, PerMIS ’08, pages 50–56.
Noceti, N. and Odone, F. (2012). Learning common be-
haviors from large sets of unlabeled temporal series.
Image and Vision Computing, 30(11):875 – 895.
Perona, P. and Malik, J. (1990). Scale-space and edge de-
tection using anisotropic diffusion. PAMI, 12(7):629–
639.
Rao, C., Yilmaz, A., and Shah, M. (2002). View-invariant
representation and recognition of actions. IJCV,
50(2):203–226.
Sciutti, A., Noceti, N., Rea, F., Odone, F., Verri, A., and
Sandini, G. (2014). The informative content of optical
flow features of biological motion. In ECVP.
Shi, J. and Tomasi, C. (1994). Good features to track. In
CVPR, pages 593 – 600.
Simion, F., Regolin, L., and Bulf, H. (2008). A predis-
position for biological motion in the newborn baby.
Proceedings of the National Academy of Sciences,
105(2):809–813.
Troje, N. F. and Westhoff, C. (2006). The inversion effect
in biological motion perception: Evidence for a life
detector? Current Biology, 16(8):821 – 824.
Wang, X., Ma, X., and Grimson, W. (2009). Unsupervised
activity perception in crowded and complicated scenes
using hierarchical bayesian models. IEEE transac-
tions on pattern analysis and machine intelligence,
31(3):539–555.
Welch, G. and Bishop, G. (1995). An introduction to the
kalman filter. Technical report.
Wu, X. and Jia, Y. (2012). View-invariant action recognition
using latent kernelized structural svm. In ECCV 2012,
volume 7576 of Lecture Notes in Computer Science,
pages 411–424.
Zheng, J. and Jiang, Z. (2013). Learning view-invariant
sparse representations for cross-view action recogni-
tion. In ICCV, pages 3176–3183.
Zheng, J., Jiang, Z., Phillips, P. J., and Chellappa, R. (2012).
Cross-view action recognition via a transferable dic-
tionary pair. In British Machine Vision Conference,
pages 1–11.
Zivkovic, Z. (2004). Improved adaptive gaussian mixture
model for background subtraction. In ICPR, volume 2,
pages 28–31.
EstimatingHumanActionsAffinitiesAcrossViews
137