REFERENCES
Boykov, Y. and Funka-Lea, G. (2006). Graph cuts and ef-
ficient n-d image segmentation. International Journal
of Computer Vision, 70:109–131.
Bucak, S., Gunsel, B., and Guersoy, O. (2007). Incremental
nonnegative matrix factorization for background mod-
eling in surveillance video. In Signal Processing and
Communications Applications, 2007. SIU 2007. IEEE
15th, pages 1–4.
Bucak, S. S. and Gunsel, B. (2009). Incremental subspace
learning via non-negative matrix factorization. Pattern
Recogn., 42(5):788–797.
Cinar, G. and Principe, J. (2011). Adaptive background esti-
mation using an information theoretic cost for hidden
state estimation. In Neural Networks (IJCNN), The
2011 International Joint Conference on, pages 489–
494.
Elgammal, A. M., Harwood, D., and Davis, L. S. (2000).
Non-parametric model for background subtraction. In
Proceedings of the 6th European Conference on Com-
puter Vision-Part II, ECCV ’00, pages 751–767, Lon-
don, UK, UK. Springer-Verlag.
Felzenszwalb, P. and Huttenlocher, D. (2004). Efficient be-
lief propagation for early vision. In Computer Vision
and Pattern Recognition, 2004. CVPR 2004. Proceed-
ings of the 2004 IEEE Computer Society Conference
on, volume 1, pages I–261–I–268 Vol.1.
Huang, D.-Y., Lin, T.-W., and Hu, W. C. (2001). Au-
tomatic multilevel thresholding based on two-stage
otsu’s method with cluster determination by valley es-
timation. Journal of Information Science and Engi-
neering, 17:713–727.
Ising, E. (1925). Beitrag zur Theorie des Ferromag-
netismus. Zeitschrift f
¨
ur Physik, 31(1):253–258.
Kim, T.-K., Wong, K.-Y. K., Stenger, B., Kittler, J., and
Cipolla, R. (2007). Incremental linear discriminant
analysis using sufficient spanning set approximations.
In Computer Vision and Pattern Recognition, 2007.
CVPR ’07. IEEE Conference on, pages 1–8.
Li, X., Hu, W., Zhang, Z., and Zhang, X. (2008). Robust
foreground segmentation based on two effective back-
ground models. In Proceedings of the 1st ACM Inter-
national Conference on Multimedia Information Re-
trieval, MIR ’08, pages 223–228.
Liao, sheng Chen, T., and choo Chung, P. (2011). A fast
algorithm for multilevel thresholding. International
Journal of Innovative Computing, Information and
Control, 7(10):5631–5644.
Lin, H.-H., Liu, T.-L., and Chuang, J.-H. (2002). A proba-
bilistic svm approach for background scene initializa-
tion. In Image Processing. 2002. Proceedings. 2002
International Conference on, volume 3, pages 893–
896 vol.3.
Marghes, T., B., and R., V. (2012). Background modeling
and foreground detection via a reconstructive and dis-
criminative subspace learning approach. In Proceed-
ings of the 2012 International Conferecne on Image
Processing, Computer Vision and Patternrecognition,
pages 106–113.
Otsu, N. (1979). A threshold selection method from gray-
level histograms. Systems, Man and Cybernetics,IEEE
Transactions on, 9(1):62–66.
Schindler, K. and Wang, H. (2006). Smooth foreground-
background segmentation for video processing. In
Proceedings of the 7th Asian Conference on Computer
Vision - Volume Part II, ACCV’06, pages 581–590.
Setiawan, N. A., Seok-Ju, H., Jang-Woon, K., and Chil-
Woo, L. (2006). Gaussian mixture model in im-
proved hls color space for human silhouette extrac-
tion. In Proceedings of the 16th International Con-
ference on Advances in Artificial Reality and Tele-
Existence, ICAT’06, pages 732–741.
Stauffer, C. and Grimson, W. (1999). Adaptive background
mixture models for real-time tracking. In Proceedings
1999 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition Vol. Two, pages
246–252. IEEE Computer Society Press.
Sun, M., Telaprolu, M., Lee, H., and Savarese, S. (2012).
Efficient and exact map-mrf inference using branch
and bound. In Proceedings of the Fifteenth Interna-
tional Conference on Artificial Intelligence and Statis-
tics (AISTATS-12), volume 22, pages 1134–1142.
Toyama, K., Krumm, J., Brumitt, B., and Meyers, B.
(1999). Wallflower: Principles and practice of back-
ground maintenance. In Seventh International Confer-
ence on Computer Vision, pages 255–261. IEEE Com-
puter Society Press.
Tsai, D. and Lai, C. (2009). Independent compo-
nent analysis-based background subtraction for indoor
surveillance. In IEEE Trans Image Proc IP 2009, vol-
ume 18, pages 158–167.
Viola, P. and Jones, M. (2004). Robust real-time face de-
tection. International Journal of Computer Vision,
57(2):137–154.
White, B. and Shah, M. (2007). Automatically tuning back-
ground subtraction parameters using particle swarm
optimization. In Multimedia and Expo, 2007 IEEE
International Conference on, pages 1826–1829.
Wren, C., Azarbayejani, A., Darrell, T., and Pentland, A.
(1997). Pfinder: Real-time tracking of the human
body. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 19:780–785.
Xu, W., Zhou, Y., Gong, Y., and Tao, H. (2005). Back-
ground modeling using time dependent markov ran-
dom field with image pyramid. In Proceedings of
the IEEE Workshop on Motion and Video Computing
(WACV/MOTION’05) - Volume 2 - Volume 02.
Y. Wang, K.-F. L. and Wu, J.-K. (2006). A dynamic condi-
tional random field model for foreground and shadow
segmentation. IEEE Trans. Pattern Analysis and Ma-
chine Intelligence (TPAMI), 28:279–289.
Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2003).
Exploring artificial intelligence in the new millen-
nium. chapter Understanding Belief Propagation and
Its Generalizations, pages 239–269.
Zhang, S., Yao, H., and Liu, S. (2009). Dynamic back-
ground subtraction based on local dependency his-
togram. International Journal of Pattern Recognition
and Artificial Intelligence, 23(07):1397–1419.
VISAPP2015-InternationalConferenceonComputerVisionTheoryandApplications
544