volume 3951 of Lecture Notes in Computer Science,
pages 404–417. Springer Berlin Heidelberg.
Belongie, S., Malik, J., and Puzicha, J. (2002). Shape
matching and object recognition using shape contexts.
IEEE Trans. Pattern Anal. Mach. Intell., 24(4):509–
522.
Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010).
Brief: Binary robust independent elementary features.
In Computer Vision ECCV 2010, volume 6314 of
Lecture Notes in Computer Science, pages 778–792.
Springer Berlin Heidelberg.
Deriche, R., Zhang, Z., Luong, Q.-T., and Faugeras, O.
(1994). Robust recovery of the epipolar geometry
for an uncalibrated stereo rig. In Proceedings of the
Third European Conference on Computer Vision (Vol.
1), ECCV ’94, pages 567–576, Secaucus, NJ, USA.
Springer-Verlag New York, Inc.
Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: A paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Commun. ACM, 24(6):381–395.
Harris, C. and Stephens, M. (1988). A combined corner
and edge detector. In In Proc. of Fourth Alvey Vision
Conference, pages 147–151.
Jiang, N., Tan, P., and Cheong, L. F. (2011). Multi-view
repetitive structure detection. In ICCV, pages 535–
542. IEEE.
Lee, S., Collins, R., and Liu, Y. (2008). Rotation symme-
try group detection via frequency analysis of frieze-
expansions. In Proceedings of CVPR 2008.
Leutenegger, S., Chli, M., and Siegwart, R. Y. (2011).
Brisk: Binary robust invariant scalable keypoints. In
Proceedings of the 2011 International Conference on
Computer Vision, ICCV ’11, pages 2548–2555, Wash-
ington, DC, USA. IEEE Computer Society.
Li, X. and Hu, Z. (2010). Rejecting mismatches by corre-
spondence function. Int. J. Comput. Vision, 89(1):1–
17.
Liu, Y., Collins, R., and Tsin, Y. (2004). A computational
model for periodic pattern perception based on frieze
and wallpaper groups. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 26(3):354–371.
Lowe, D. (1999). Object recognition from local scale-
invariant features. In Computer Vision, 1999. The Pro-
ceedings of the Seventh IEEE International Confer-
ence on, volume 2, pages 1150–1157 vol.2.
Loy, G. and Eklundh, J.-O. (2006). Detecting symmetry and
symmetric constellations of features. In Proceedings
of the 9th European Conference on Computer Vision
- Volume Part II, ECCV’06, pages 508–521, Berlin,
Heidelberg. Springer-Verlag.
Ma, J., Zhao, J., Tian, J., Yuille, A. L., and Tu, Z. (2014).
Robust point matching via vector field consensus.
IEEE Transactions on Image Processing, 23(4):1706–
1721.
Martins, P., Carvalho, P., and Gatta, C. (2012). Context
aware keypoint extraction for robust image represen-
tation. In Proceedings of the British Machine Vision
Conference, pages 100.1–100.12. BMVA Press.
Mikolajczyk, K. and Schmid, C. (2005). A perfor-
mance evaluation of local descriptors. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
27(10):1615–1630.
Mok, S. J., Jung, K., Ko, D. W., Lee, S. H., and Choi,
B.-U. (2011). Serp: Surf enhancer for repeated pat-
tern. In Proceedings of the 7th International Con-
ference on Advances in Visual Computing - Volume
Part II, ISVC’11, pages 578–587, Berlin, Heidelberg.
Springer-Verlag.
Morel, J.-M. and Yu, G. (2009). Asift: A new framework
for fully affine invariant image comparison. SIAM J.
Img. Sci., 2(2):438–469.
Mortensen, E. N., Deng, H., and Shapiro, L. (2005). A
sift descriptor with global context. In Proceedings
of the 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05)
- Volume 1 - Volume 01, CVPR ’05, pages 184–190,
Washington, DC, USA. IEEE Computer Society.
Ortiz, R. (2012). Freak: Fast retina keypoint. In Proceed-
ings of the 2012 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), CVPR ’12, pages
510–517, Washington, DC, USA. IEEE Computer So-
ciety.
Pang, S., Xue, J., Tian, Q., and Zheng, N. (2014). Ex-
ploiting local linear geometric structure for identify-
ing correct matches. Computer Vision and Image Un-
derstanding, 128(0):51 – 64.
Parzen, E. (1962). On estimation of a probability den-
sity function and mode. The Annals of Mathematical
Statistics, 33(3):pp. 1065–1076.
Pauly, M., Mitra, N. J., Wallner, J., Pottmann, H., and
Guibas, L. J. (2008). Discovering structural regular-
ity in 3d geometry. In ACM SIGGRAPH 2008 Papers,
SIGGRAPH ’08, pages 43:1–43:11, New York, NY,
USA. ACM.
Rabin, J., Gousseau, Y., and Delon, J. (2007). A contrario
matching of local descriptors.
Rosten, E. and Drummond, T. (2006). Machine learning for
high-speed corner detection. In European Conference
on Computer Vision, volume 1, pages 430–443.
Rublee, E., Rabaud, V., Konolige, K., and Bradski, G.
(2011). Orb: An efficient alternative to sift or surf. In
Proceedings of the 2011 International Conference on
Computer Vision, ICCV ’11, pages 2564–2571, Wash-
ington, DC, USA. IEEE Computer Society.
Sattler, T., Leibe, B., and Kobbelt, L. (2009). Scramsac: Im-
proving ransac’s efficiency with a spatial consistency
filter. In ICCV, pages 2090–2097. IEEE.
Shao, T. S. H. and Gool, L. V. (2003). Zubud-zurich build-
ings database for image based recognition, technical
report no. 260.
T. Trzcinski, M. C. and Lepetit, V. (2013). Learning Image
Descriptors with Boosting. submitted to IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
(PAMI).
Torr, P. H. S. and Murray, D. W. (1995). Outlier detection
and motion segmentation. pages 432–443.
Torr, P. H. S. and Zisserman, A. (2000). Mlesac: A new
robust estimator with application to estimating image
geometry. Comput. Vis. Image Underst., 78(1):138–
156.
CORE:ACOnfusionREductionAlgorithmforKeypointsFiltering
567