the performance level of the individual segmentation.
We proposed a novel probability-based diversity mea-
sure with a new concept that is suitable for unsuper-
vised classifiers. In this concept, we distinguish be-
tween healthy and unhealthy diversity areas for an
ensemble design. The experimental results show the
appropriateness of our approach and how it can be
used to evaluate the performance of ensembles. We
also proposed a color-coded diversity visualization to
visually encode the healthy and unhealthy diversity
areas and their diversity level. This means that the
diversity visualization can be used in comparing the
performance of different ensembles.
REFERENCES
Chen S., Zhang D. (2004). Robust image segmentation us-
ing fcm with spatial constraints based on new kernel-
induced distance metric. IEEE Trans. on System, Man
and Cybernetics-Part B, 34(4):1907–1916.
Ahmed, M. N., Yamany, S. M., Mohamed, N., Farag, A. A.,
and Moriarty, T. (2002). A modified fuzzy c-means
algorithm for bias field estimation and segmentation
of mri data. IEEE Transactions on Medical Imaging,
21(3):193–199.
Artaechevarria, X., Muoz-Barrutia, A., and de Solorzano,
C. O. (2009). Combination strategies in multi-atlas
image segmentation: Application to brain mr data.
IEEE Transactions Medical Imaging, 28(8):1266–
1277.
Bezdek, J. (1981). Pattern recognition with fuzzy objective
function algorithms. Plenum, NY.
Chuang, K.-S., Tzeng, H.-L., Chen, S., Wu, J., and Chen,
T.-J. (2006). Fuzzy c-means clustering with spatial
information for image segmentation. Computerized
Medical Imaging and Graphics, 30(1):9 – 15.
Dietterich, T. G. (2000). Ensemble methods in machine
learning. In Proceedings of the First International
Workshop on Multiple Classifier Systems, pages 1–15,
London, UK, UK. Springer-Verlag.
Fred, A. and Jain, A. (2005). Combining multiple clus-
terings using evidence accumulation. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
27(6):835–850.
Kittler, J., Hatef, M., Duin, R. P. W., and Matas, J. (1998).
On combining classifiers. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 20(3):226–
239.
Kuncheva, L. I. (2004). Combining Pattern Classifiers:
Methods and Algorithms. Wiley-Interscience.
Kuncheva, L. I. and Whitaker, C. J. (2003). Measures
of diversity in classifier ensembles and their relation-
ship with the ensemble accuracy. Machine learning,
51(2):181–207.
Langerak, R., van der Heide, U. A., Kotte, A. N. T. J.,
Viergever, M. A., van Vulpen, M., and Pluim, J. P. W.
(2010). Label fusion in atlas-based segmentation us-
ing a selective and iterative method for performance
level estimation (simple). IEEE Transactions Medical
Imaging, 29(12):2000–2008.
Li, C. and Xu, C. and Anderson, A. and Gore, J. (2009). Mri
tissue classification and bias field estimation based on
coherent local intensity clustering: A unified energy
minimization framework. In Information Processing
in Medical Imaging, volume 5636 of Lecture Notes
in Computer Science, pages 288–299. Springer Berlin
Heidelberg.
Masisi, L. M., Nelwamondo, F. V., and Marwala, T. (2008).
The use of entropy to measure structural diversity.
CoRR, abs/0810.3525.
Mignotte, M. (2010). A label field fusion bayesian model
and its penalized maximum rand estimator for image
segmentation. IEEE Transactions on Image Process-
ing, 19(6):1610–1624.
MNI (1997). Brainweb, simulated brain
database, available since 1997. Available at
http://www.bic.mni.mcgill.ca/brainweb/, access time:
on November 2012.
Mohamed, N., Ahmed, M., and Farag, A. (1999). Modified
fuzzy c-mean in medical image segmentation. In Pro-
ceedings IEEE International Conference on Acous-
tics, Speeeh, and Signal Processing, 1999, Piscat-
away, NI USA, volume 6, pages 3429–3432 vol.6.
Paci, M., Nanni, L., and Severi, S. (2013). An ensemble
of classifiers based on different texture descriptors for
texture classification. Journal of King Saud University
- Science, 25(3):235 – 244.
Rohlfing, T. and Maurer, C. R. J. (2005). Multi-classifier
framework for atlas-based image segmentation. Pat-
tern Recognition Letters, 26(13):2070 – 2079.
Sharkey, A. J. C. (1999). Combining artificial neural nets:
ensemble and modular multi-net systems. Springer-
Verlag, New York.
Sirlantzis, K., Hoque, S., and Fairhurst, M. (2008). Diver-
sity in multiple classifier ensembles based on binary
feature quantisation with application to face recogni-
tion. Applied Soft Computing, 8(1):437 – 445.
Tolias, Y. and Panas, S. (1998). On applying spatial
constraints in fuzzy image clustering using a fuzzy
rule-based system. Signal Processing Letters, IEEE,
5(10):245–247.
Yuan, K., Wu, L., Cheng, Q., Bao, S., Chen, C., and Zhang,
H. (2005). A novel fuzzy c-means algorithm and its
application. International Journal of Pattern Recog-
nition and Artificial Intelligence, 19(8):1059–1066.
Zhang, D. and Chen, S. (2004). A novel kernelised fuzzy
c-means algorithm with application in medical im-
age segmentation. Artificial Intelligence in Medicine,
32(1):37–50.
VISAPP2015-InternationalConferenceonComputerVisionTheoryandApplications
576