necessarily reflect the views of the ARO or the
United States Government.
REFERENCES
Andriluka, M., Roth, S., & Schiele, B. (2008, June).
People-tracking-by-detection and people-detection-by-
tracking. In Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on (pp. 1-8).
IEEE.
Babenko, B., Yang, M. H., & Belongie, S. (2009, June).
Visual tracking with online multiple instance learning.
In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on (pp. 983-990).
IEEE.
Chang, C., & Ansari, R. (2005). Kernel particle filter for
visual tracking. Signal processing letters, IEEE, 12(3),
242-245.
Hager, G. D., & Belhumeur, P. N. (1998). Efficient region
tracking with parametric models of geometry and
illumination. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 20(10), 1025-
1039.
Kalal, Z., Matas, J., & Mikolajczyk, K. (2010, June). Pn
learning: Bootstrapping binary classifiers by structural
constraints. In Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on (pp.
49-56). IEEE.
KaewTraKulPong, P., & Bowden, R. (2002). An improved
adaptive background mixture model for real-time
tracking with shadow detection. In Video-Based
Surveillance Systems (pp. 135-144). Springer US.
Lan, X., & Huttenlocher, D. P. (2004, July). A unified
spatio-temporal articulated model for tracking.
In Computer Vision and Pattern Recognition, 2004.
CVPR 2004. Proceedings of the 2004 IEEE Computer
Society Conference on (Vol. 1, pp. I-722). IEEE.
Lombardi, P., & Versino, C. (2011). Learning to Detect
Event Sequences in Surveillance Streams at Very Low
Frame Rate. In Machine Learning for Vision-Based
Motion Analysis (pp. 117-144). Springer London.
Lucas, B. D., & Kanade, T. (1981, August). An iterative
image registration technique with an application to
stereo vision. In IJCAI (Vol. 81, pp. 674-679).
Maggio, E., & Cavallaro, A. (2005, March). Hybrid
Particle Filter and Mean Shift tracker with adaptive
transition model. In ICASSP (2) (pp. 221-224).
Moreno-Noguer, F., Sanfeliu, A., & Samaras, D. (2008).
Dependent multiple cue integration for robust
tracking. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 30(4), 670-685.
Oltramari, A., & Lebiere, C. (2012). Using ontologies in a
cognitive-grounded system: automatic action
recognition in video surveillance. In Proceedings of
the 7th international conference on semantic
technology for intelligence, defense, and security,
Fairfax.
Shi, J., & Tomasi, C. (1994, June). Good features to track.
In Computer Vision and Pattern Recognition, 1994.
Proceedings CVPR'94., 1994 IEEE Computer Society
Conference on (pp. 593-600). IEEE.
Smith, K., Gatica-Perez, D., Odobez, J. M., & Ba, S.
(2005, June). Evaluating multi-object tracking.
In Computer Vision and Pattern Recognition-
Workshops, 2005. CVPR Workshops. IEEE Computer
Society Conference on (pp. 36-36). IEEE.
Tao, H., Sawhney, H. S., & Kumar, R. (2002). Object
tracking with bayesian estimation of dynamic layer
representations. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 24(1), 75-89.
Viola, P., & Jones, M. (2001). Rapid object detection
using a boosted cascade of simple features.
In Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer
Society Conference on (Vol. 1, pp. I-511). IEEE.
Virat Public Dataset: http://viratdata.org/
Williams, O., Blake, A., & Cipolla, R. (2003, October). A
sparse probabilistic learning algorithm for real-time
tracking. In Computer Vision, 2003. Proceedings.
Ninth IEEE International Conference on (pp. 353-
360). IEEE.
VISAPP2015-InternationalConferenceonComputerVisionTheoryandApplications
574