The proposed approach performs the optimisation
on sparse structure and then transforms the dense
point clouds by the calculated camera transforma-
tions. This yields a valid result, however, it may be
possible to obtain a more precise dense point cloud
alignment. Since the relation between the sparse
points and points from the dense point cloud are
known, it is possible to calculate a rigid transfor-
mation that aligns the dense point cloud to the cor-
responding sparse points (e.g. using (Horn, 1987)).
Further work will expand in this direction.
ACKNOWLEDGEMENTS
The research leading to these results has received
funding from the European Union, 7
th
Frame-
work Programme grants 316564-IMPART and the
IT4Innovations Centre of Excellence, grant n.
CZ.1.05/1.1.00/02.0070, supported by RDIOP funded
by Structural Funds of the EU and the state budget of
the Czech Republic.
REFERENCES
Agarwal, S., Snavely, N., Simon, I., Seitz, S. M., and
Szeliski, R. (2009). Building rome in a day.
Arun, K., Huang, T., and Blostein, S. (1987). Least square
fitting of two 3-d point sets. IEEE Trans. Pattern Anal-
ysis and Machine Intelligence, 9(5):698–700.
Beall, C., Lawrence, B., Ila, V., and Dellaert, F. (2010). 3D
Reconstruction of Underwater Structures.
Besl, P. and McKay, N. (1992). A method for registration
of 3-D shapes. 14(2).
Chum, O. and Matas, J. (2005). Matching with PROSAC -
Progressive Sample Consensus. In Proc. CVPR, pages
220–226.
Chum, O. and Matas, J. (2008). Optimal Randomized
RANSAC. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 30(8):1472–1482.
Chum, O., Matas, J., and Kittler, J. (2003). Locally Opti-
mized RANSAC. In Lecture Notes in Computer Sci-
ence, volume 2781, pages 236–243. Springer.
Dellaert, F. and Kaess, M. (2006). Square Root SAM: Si-
multaneous localization and mapping via square root
information smoothing. 25(12):1181–1203.
Feldman, D. and Weinshall, D. (2005). Realtime ibr with
omnidirectional crossed-slits projection. In Proc.
ICCV, pages 839–845.
Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: A Paradigm for Model Fitting with Appli-
cations to Image Analysis and Automated Cartogra-
phy. Communications of the ACM, 24(6):381–395.
Hartley, R. and Zisserman, A. (2003). Multiple View Geom-
etry in Computer Vision. 2nd edition.
Hong, J., Tan, X., Pinette, B., Weiss, R., and E.M., R.
(1991). Image-based homing. In Proc. ICRA, pages
620–625.
Horn, B. K. P. (1987). Closed-form Solution of Absolute
Orientation Using Unit Quaternions. Journal of the
Optical Society of America A, 4(4):629–642.
˙
Imre, E., Guillemaut, J.-Y., and Hilton, A. (2010). Moving
Camera Registration for Multiple Camera Setups in
Dynamic Scenes. In Proc. BMVC, pages 1–12.
Jeong, Y., Nister, D., Steedly, D., Szeliski, R., and
Kweon, I.-S. (2012). Pushing the envelope of mod-
ern methods for bundle adjustment. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
34(8):1605–1617.
Kaess, M., Ranganathan, A., and Dellaert, F. (2008). iSAM:
Incremental smoothing and mapping. 24(6):1365–
1378.
Kim, H. and Hilton, A. (2013). 3d scene reconstruction
from multiple spherical stereo pairs. International
Journal of Computer Vision, 104(1):94–116.
K
¨
ummerle, R., Grisetti, G., Strasdat, H., Konolige, K., and
Burgard, W. (2011). g2o: A general framework for
graph optimization. In Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), Shanghai, China.
Lhuillier, M. (2008). Automatic scene structure and camera
motion using a catadioptric system. Computer Vision
and Image Understanding, 109(2):186–203.
Lowe, D. (2004). Distinctive image features from scale-
invariant keypoints. 60(2):91–110.
Nayar, S. (1997). Catadioptric omnidirectional camera. In
Proc. CVPR, pages 482–488.
Polok, L., Ila, V., Solony, M., Smrz, P., and Zemcik, P.
(2013a). Incremental block cholesky factorization for
nonlinear least squares in robotics. In Proceedings of
the Robotics: Science and Systems 2013.
Polok, L., Solony, M., Ila, V., Zemcik, P., and Smrz, P.
(2013b). Efficient implementation for block matrix
operations for nonlinear least squares problems in
robotic applications. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation.
IEEE.
Rusinkiewicz, S. and Levoy, M. (2001). Efficient variants
of the icp algorithm.
Rusu, R. B. and Cousins, S. (2011). 3D is here: Point Cloud
Library (PCL). In Proc. ICRA.
Scharstein, D. and Szeliski, R. (2002). A taxonomy and
evaluation of dense two-frame stereo correspondence
algorithms. International Journal of Computer Vision,
47(1):7–42.
Snavely, N., Seitz, S. M., and Szeliski, R. (2006). Photo
tourism: exploring photo collections in 3d. ACM
transactions on graphics (TOG), 25(3):835–846.
Torr, P. H. S. and Zisserman, A. (2000). MLESAC: A New
Robust Estimator with Application to Estimating Im-
age Geometry. Computer Vision and Image Under-
standing, 78(1):138–156.
V.Fragoso and Turk, M. (2013). SWIGS: A Swift Guided
Sampling Method. In Proc. of IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), pages
2770–2777, Portland, Oregon.
Zhang, F. (2005). The Schur complement and its applica-
tions, volume 4. Springer.
FastandAccurateRefinementMethodfor3DReconstructionfromStereoSphericalImages
583