visual analytics of tracked moving objects. In Proc.
of Workshop on Behaviour Monitoring and Interpre-
tation, pages 59–64, Ghent, BEL.
Hurter, C., Tissoires, B., and Conversy, S. (2009). From-
DaDy: Spreading aircraft trajectories across views to
support iterative queries. IEEE Trans. on Visualization
and Computer Graphics, 15(6):1017–1024.
Joshi, A. and Rheingans, P. (2005). Illustration-inspired
techniques for visualizing time-varying data. In Proc.
of Visualization, pages 679–686, Minneapolis, MN,
USA.
Khan, Z., Balch, T., and Dellaert, F. (2005). MCMC-based
particle filtering for tracking a variable number of in-
teracting targets. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 27(11):1805–1819.
Kimura, T., Ohashi, M., Crailsheim, K., Schmickl, T.,
Okada, R., Radspieler, G., and Ikeno, H. (2014). De-
velopment of a new method to track multiple honey
bees with complex behaviors on a flat laboratory
arena. Plos One, 9(1):1–12.
Li, K. et al. (2008). Cell population tracking and lineage
construction with spatiotemporal context. Medical
Image Analysis, 12(5):546–566.
Li, Y., Huang, C., and Nevatia, R. (2009). Learning to asso-
ciate: hybridboosted multi-target tracker for crowded
scene. In Proc. of Computer Vision and Pattern
Recognition, pages 2953–2960, Miami, FL, USA.
Milan, A., Gade, R., Dick, A., Moeslund, T., and Reid, I.
(2014). Improving global multi-target tracking with
local updates. In Proc. of European Conference on
Computer Vision Workshops, Zurich, CH.
Nawaz, T., Cavallaro, A., and Rinner, B. (2014a). Trajec-
tory clustering for motion pattern extraction in aerial
videos. In Proc. of International Conference on Image
Processing, Paris, FR.
Nawaz, T., Poiesi, F., and Cavallaro, A. (2014b). Measures
of effective video tracking. Trans. on Image Process-
ing, 23(1):376–388.
Park, C., Woehl, T., Evans, J., and Browning, N. (2014).
Minimum cost multi-way data association for op-
timizing multitarget tracking of interacting objects.
IEEE Trans. on Pattern Analysis and Machine Intel-
ligence, DOI: 10.1109/TPAMI.2014.2346202.
Poiesi, F. and Cavallaro, A. (2014). Tracking multiple
high-density homogeneous targets. IEEE Trans. on
Circuits and Systems for Video Technology, DOI:
10.1109/TCSVT.2014.2344509.
Pylyshyn, Z. (2003). Seeing and Visualizing: It’s not what
you think (Life and Mind). Bradford Book.
Ross, D., Lim, J., Lin, R.-S., and Yang, M.-H. (2008). In-
cremental learning for robust visual tracking. Interna-
tional Journal on Computer Vision, 77(1-3):125–141.
SanMiguel, J., Cavallaro, A., and Martinez, J. (2012).
Adaptive on-line performance evaluation of video
trackers. IEEE Trans. on Image Processing,
21(5):2812–2823.
Shitrit, H. et al. (2014). Multi-commodity network flow
for tracking multiple people. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 36(8):1614–1627.
Sochman, J. and Hogg, D. (2011). Who knows who - in-
verting the Social Force Model for finding groups. In
Proc. of Internation Conference on Computer Vision
Workshops, pages 830–837, Barcelona, Spain.
Solera, F., Calderara, S., and Cucchiara, R. (2013). Struc-
tured learning for detection of social groups in crowd.
In Proc. of Advanced Video and Signal-Based Surveil-
lance, pages 7–12, Krakow, Poland.
Tominski, C., Schumann, H., Andrienko, G., and An-
drienko, N. (2012). Stacking-based visualization of
trajectory attribute data. IEEE Trans. on Visualization
and Computer Graphics, 18(12):2565–2574.
Veeraraghavan, A., Chellappa, R., and Srinivasan, M.
(2008). Shape-and-behavior encoded tracking of bee
dances. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 30(3):463–476.
Whitehorn, L., Hawkes, F., and Dublon, I. (2013). Super-
plot3D: an open source GUI tool for 3D trajectory vi-
sualisation and elementary processing. Source code
for biology and medicine, 8(19):1–4.
Wong, B. (2012). Points of view: visualization biological
data. Nature Methods, 9(12):1131.
Wu, B. and Nevatia, R. (2006). Tracking of multiple, par-
tially occluded humans based static body part detec-
tion. In Proc. of Computer Vision and Pattern Recog-
nition, pages 951–958, New York, USA.
Yang, B. and Nevatia, R. (2012). An online learned CRF
model for multi-target tracking. In Proc. of Com-
puter Vision and Pattern Recognition, pages 2034–
2041, Providence, RI.
Yang, B. and Nevatia, R. (2014). Multi-target tracking by
online learning a CRF model of appearance and mo-
tion patterns. International Journal on Computer Vi-
sion, 107(2):203–217.
Yin, F., Makris, D., and Velastin, S. (2007). Performance
evaluation of object tracking algorithms. In WPETS,
Rio de Janeiro, Brazil.
Zhang, S., Wang, J., Wang, Z., Gong, Y., and Liu, Y. (2015).
Multi-target tracking by learning local-to-global tra-
jectory models. Pattern Recognition, 48(2):580–590.
Zhang, T., Hanqing, L., and Li, S. (2009). Learning seman-
tic scene models by object classification and trajectory
clustering. In Proc. of Computer Vision and Pattern
Recognition, pages 1940–1947, Miami, FL, USA.
IVAPP2015-InternationalConferenceonInformationVisualizationTheoryandApplications
162