REFERENCES
Ahuja, N. and Tuceryan, M. (1989). Extraction of early
perceptual structure in dot patterns: Integrating re-
gion, boundary, and component gestalt. Comput. Vi-
sion Graph. Image Process., 48(3):304–356.
Albuquerque, G., Eisemann, M., and Magnor, M. (2011).
Perception-based visual quality measures. In Proc.
IEEE Symposium on Visual Analytics Science and
Technology (VAST) 2011, pages 13–20.
Amar, R., Eagan, J., and Stasko, J. (2005). Low-level com-
ponents of analytic activity in information visualiza-
tion. In Proceedings of the Proceedings of the 2005
IEEE Symposium on Information Visualization, IN-
FOVIS ’05, pages 15–, Washington, DC, USA. IEEE
Computer Society.
Andrienko, G., Andrienko, N., Bak, P., Keim, D., Kisile-
vich, S., and Wrobel, S. (2011). A conceptual
framework and taxonomy of techniques for analyzing
movement. J. Vis. Lang. Comput., 22(3):213–232.
Andrienko, N. V., Andrienko, G. L., and Gatalsky, P.
(2000). Visualization of spatio-temporal informa-
tion in the internet. In 11th International Work-
shop on Database and Expert Systems Applications
(DEXA’00), 6-8 September 2000, Greenwich, London,
UK, pages 577–585.
Borg, I. and Groenen, P. J. F. (2010). Modern Multidimen-
sional Scaling Theory and Applications. Springer Se-
ries in Statistics. Springer, 2nd. edition edition.
Brehmer, M. and Munzner, T. (2013). A multi-level ty-
pology of abstract visualization tasks. IEEE Trans.
Visualization and Computer Graphics (TVCG) (Proc.
InfoVis), 19(12):2376–2385.
Collins, C., Penn, G., and Carpendale, S. (2009). Bubble
sets: Revealing set relations with isocontours over ex-
isting visualizations. IEEE Transactions on Visualiza-
tion and Computer Graphics, 15(6):1009–1016.
Cuadros, A. M., Paulovich, F. V., Minghim, R., and Telles,
G. P. (2007). Point placement by phylogenetic trees
and its application to visual analysis of document col-
lections. In Proceedings of the 2007 IEEE Symposium
on Visual Analytics Science and Technology, pages
99–106. IEEE Computer Society.
Duncan, J. and Humphreys, G. (1989). Visual search and
stimulus similarity. Psychological Review, 96:433–
458.
Eades, P., Huang, W., and Hong, S. (2010). A force-directed
method for large crossing angle graph drawing. CoRR,
abs/1012.4559.
Eades, P. A. (1984). A heuristic for graph drawing. In Con-
gressus Numerantium, volume 42, pages 149–160.
Etemadpour, R., Carlos da Motta, R., Paiva, J. G. d. S.,
Minghim, R., Ferreira, M. C., and Linsen, L. (2014a).
Role of human perception in cluster-based visual anal-
ysis of multidimensional data projections. In 5
th
In-
ternational Conference on Information Visualization
Theory and Applications (IVAPP), pages 107–113,
Lisbon, Portugal.
Etemadpour, R., Motta, R., de Souza Paiva, J. G., Minghim,
R., de Oliveira, M. C. F., and Linsen, L. (2014b).
Perception-based evaluation of projection methods for
multidimensional data visualization. IEEE Trans-
actions on Visualization and Computer Graphics,
99(PrePrints):1.
Etemadpour, R., Olk, B., and Linsen, L. (2014c). Eye-
tracking investigation during visual analysis of pro-
jected multidimensional data with 2d scatterplots. In
5
th
International Conference on Information Visual-
ization Theory and Applications (IVAPP), pages 233–
246, Lisbon, Portugal.
Geng, X., Zhan, D.-C., and Zhou, Z.-H. (2005). Supervised
nonlinear dimensionality reduction for visualization
and classification. IEEE Transactions on Systems,
Man, and Cybernetics, Part B, 35(6):1098–1107.
Henry, N. and Fekete, J. (2006). Matrixexplorer: a
dual-representation system to explore social networks.
IEEE Transactions on Visualization and Computer
Graphics, 12:677–684.
Ingram, S., Munzner, T., Irvine, V., Tory, M., Bergner, S.,
and Mller, T. (2010). Dimstiller: Workflows for di-
mensional analysis and reduction. In IEEE VAST,
pages 3–10. IEEE.
Ingram, S., Munzner, T., and Olano, M. (2009). Glimmer:
Multilevel mds on the gpu. IEEE Transactions on Vi-
sualization and Computer Graphics, 15(2):249–261.
Jolliffe, I. T. (1986). Pincipal Component Analysis.
Springer-Verlag.
Koffka, K. (1935). Principles of Gestalt Psychology. . Lund
Humphries, London.
Lewis, J. M. and Ackerman, M. (2012). Human cluster eval-
uation and formal quality measures: A comparative
study. pages 1870–1875. 34th Annual Conference of
the Cognitive Science Society.
M
¨
uller, E., G
¨
unnemann, S., Assent, I., and Seidl, T. (2009).
Evaluating clustering in subspace projections of high
dimensional data. PVLDB, 2(1):1270–1281.
Paiva, J. G. S., C., L. F., Pedrini, H., Telles, G. P., and
Minghim, R. (2011). Improved similarity trees and
their application to visual data classification. IEEE
Transactions on Visualization and Computer Graph-
ics, 17(12):2459–2468.
Paulovich, F. V., Nonato, L. G., Minghim, R., and Lev-
kowitz, H. (2008). Least square projection: A fast
high-precision multidimensional projection technique
and its application to document mapping. IEEE
Transactions on Visualization and Computer Graph-
ics, 14(3):564–575.
Peng, W., Ward, M. O., and Rundensteiner, E. A. (2004).
Clutter reduction in multi-dimensional data visualiza-
tion using dimension reordering. In Ward, M. O. and
Munzner, T., editors, INFOVIS, pages 89–96. IEEE
Computer Society.
Poco, J., Etemadpour, R., Paulovich, F. V., Long, T. V.,
Rosenthal, P., de Oliveira, M. C. F., Linsen, L., and
Minghim, R. (2011). A framework for exploring
multidimensional data with 3d projections. Comput.
Graph. Forum, 30(3):1111–1120.
Rensink, R. A. and Baldridge, G. (2010). The perception
of correlation in scatterplots. Comput. Graph. Forum,
29(3):1203–1210.
AUser-centricTaxonomyforMultidimensionalDataProjectionTasks
61