REFERENCES
Ahonen, T., Hadid, A., and Pietikinen, M. (2006). Face
description with local binary patterns: Application to
face recognition. IEEE Trans. Pattern Anal. Mach.
Intell., 28:2037–2041.
Bartlett, M. S., Movellan, J. R., and Sejnowski, T. J. (2002).
Face recognition by independent component analysis.
IEEE Trans. Neural Networks, pages 1450–1464.
Bay, H., Ess, A., Tuytelaars, T., and van Gool, L. (2008).
Speeded-Up Robust Features (SURF). Computer Vi-
sion and Image Understanding, 110(3):346–359.
Bekele, D., Teutsch, M., and Schuchert, T. (2013). Evalua-
tion of binary keypoint descriptors. In IEEE Int. Conf.
Image Processing (ICIP), pages 3652–3656.
Belhumeur, P. N., Hespanha, J. P., and Kriegman, D. J.
(1997). Eigenfaces vs. Fisherfaces: recognition using
class specific linear projection. IEEE Trans. Pattern
Anal. Mach. Intell., 19(7):711–720.
Bereta, M., Pedrycz, W., and Reformat, M. (2013). Lo-
cal descriptors and similarity measures for frontal
face recognition: A comparative analysis. Journal
of Visual Communication and Image Representation,
24(8):1213–1231.
Chellappa, R., Wilson, C., and Sirohey, S. (1995). Human
and machine recognition of faces: a survey. Proc.
IEEE, 83(5):705–741.
Dreuw, P., Steingrube, P., Hanselmann, H., and Ney, H.
(2009). SURF-face: Face recognition under viewpoint
consistency constraints. In Proc. British Machine Vi-
sion Conf., pages 1–1.
Du, G., Su, F., Cai, A., Ding, M., Bhanu, B., Wahl, F. M.,
and Roberts, J. (2009). Face recognition using SURF
features. In SPIE Proc. Int. Symp. Multispectral Image
Proc. and Pattern Recog., pages 749628–1 – 7.
Geng, C. and Jiang, X. (2009). Face recognition using sift
features. In Image Processing (ICIP), 2009 16th IEEE
International Conference on, pages 3313–3316.
Jafri, R. and Arabnia, H. R. (2009). A Survey of Face
Recognition Techniques. Journal of Information Pro-
cessing Systems, 5(2):41–68.
Kisku, D. R., Gupta, P., and Sing, J. K. (2010). Face recog-
nition using sift descriptor under multiple paradigms
of graph similarity constraints. In Int. J. Multimedia
and Ubiquitous Engineering, volume 5, pages 1–18.
Kong, S. G., Heo, J., Abidi, B. R., Paik, J., and Abidi, M. A.
(2005). Recent advances in visual and infrared face
recognitiona review. Computer Vision and Image Un-
derstanding, 97(1):103 – 135.
Liu, N., Lai, J., and Qiu, H. (2011). Robust Face Recog-
nition by Sparse Local Features from a Single Image
under Occlusion. In Graphics (ICIG), pages 500–505.
Lowe, D. G. (2004). Distinctive Image Features from Scale-
Invariant Keypoints. International Journal of Com-
puter Vision, 60(2):91–110.
Luo, J., Ma, Y., Takikawa, E., Lao, S., Kawade, M., and
Lu, B.-L. (2007). Person-specific sift features for face
recognition. In Int. Conf. Acoustics, Speech and Sig-
nal Processing, volume 2, pages II–593–II–596.
Martinez, A. and Benavente, R. (1998). The AR Face
Database: CVC Technical Report #24.
Martinez, A. M. and Kak, A. C. (2001). PCA versus LDA.
IEEE Trans. Pattern Anal. Mach. Intell., 23(2):228–
233.
Muja, M. and Lowe, D. G. (2009). Fast approximate near-
est neighbors with automatic algorithm configuration.
In In VISAPP International Conference on Computer
Vision Theory and Applications, pages 331–340.
Ojala, T., Pietikainen, M., and Maenpaa, T. (2002). Mul-
tiresolution grayscale and rotation invariant texture
classification with local binary patterns. IEEE Trans.
Pattern Anal. Mach. Intell., pages 971–987.
Phillips, P. J., Hyeonjoon Moon, Rizvi, S. A., and Rauss,
P. J. (2000). The FERET evaluation methodology
for face-recognition algorithms. IEEE Trans. Pattern
Anal. Mach. Intell., 22(10):1090–1104.
Phillips, P. J., Wechsler, H., Huang, J., and Rauss, P. J.
(1998). The FERET database and evaluation proce-
dure for face-recognition algorithms. Image and Vi-
sion Computing, 16(5):295–306.
Rublee, E., Rabaud, V., Konolige, K., and Bradski, G.
(2011). ORB: An efficient alternative to SIFT or
SURF. In Int. Conf. Computer Vision, pages 2564–
2571.
Sirovich, L. and Kirby, M. (1987). Low-dimensional proce-
dure for the characterization of human faces. Journal
of the Optical Society of America A, 4(3):519.
Viola, P. and Jones, M. (2001). Rapid object detection using
a boosted cascade of simple features. In Computer
Vision and Pattern Recognition., pages I–511–I–518.
Xie, S., Shan, S., Chen, X., and Chen, J. (2010). Fus-
ing Local Patterns of Gabor Magnitude and Phase for
Face Recognition. IEEE Trans. Image Processing,
19(5):1349–1361.
Yang, B. and Chen, S. (2013). A comparative study on
local binary pattern (LBP) based face recognition:
LBP histogram versus LBP image. Neurocomputing,
120:365–379.
Yang, J., Zhang, D., Frangi, A. F., and Yang, J. (2004). Two-
dimensional PCA: A new approach to appearance-
based face representation and recognition. IEEE
Trans. Pattern Anal. Mach. Intell., 26(1):131–137.
Zhang, X. and Gao, Y. (2009). Face recognition across pose:
A review. Pattern Recognition, 42(11):2876 – 2896.
VISAPP2015-InternationalConferenceonComputerVisionTheoryandApplications
454