improved object separation method.
We compare our approach against grab-cut and a
dedicated wood log segmentation method and outper-
form both methods. In the case of wood log segmen-
tation, our approach is even a little bit better than the
dedicated wood log segmentation method.
REFERENCES
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and
S
¨
usstrunk, S. (2012). SLIC Superpixels Compared to
State-of-the-Art Superpixel Methods. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
34(11):2274–2282.
Akin, C., Kirci, M., Gunes, E. O., and Cakir, Y. (2012).
Detection of the pomegranate fruits on tree using
image processing. In Agro-Geoinformatics (Agro-
Geoinformatics), 2012 First International Conference
on, pages 1–4.
Aloisio, C., Mishra, R., Chang, C.-Y., and English, J.
(2012). Next generation image guided citrus fruit
picker. In Technologies for Practical Robot Applica-
tions (TePRA), 2012 IEEE International Conference
on, pages 37 –41.
Boykov, Y. and Kolmogorov, V. (2004). An experimental
comparision of min-cut/max-flow algorithms for en-
ergy minimation in vision. In PAMI, pages 1124–
1137.
Chan, T. F. and Vese, L. A. (2001). Active contours with-
out edges. IEEE Transactions on Image Processing,
10(2):266–277.
Dahl, A. B., Guo, M., and Madsen, K. H. (2006). Scale-
space and watershed segmentation for detection of
wood logs. In Vision Day, Informatics and Mathe-
matical Modelling.
Felzenszwalb, P. F. and Huttenlocher, D. P. (2006). Efficient
belief propagation for early vision. Int. J. Comput.
Vision, 70(1):41–54.
Gutzeit, E., Ohl, S., Kuijper, A., Voskamp, J., and Urban,
B. (2010). Setting graph cut weights for automatic
foreground extraction in wood log images. In VISAPP
2010, pages 60–67.
Gutzeit, E. and Voskamp, J. (2012). Automatic segmen-
tation of wood logs by combining detection and seg-
mentation. In ISVC 2012 - 8th International Sympo-
sium on Visual Computing, volume LNCS 7431, pages
252–261.
Herbon, C., Tnnies, K. D., and Stock, B. (2014). Detection
and segmentation of clustered objects by using iter-
ative classification, segmentation, and gaussian mix-
ture models and application to wood log detection. In
GCPR, pages 354–364.
Huang, Q. and Dom, B. (1995). Quantitative methods of
evaluating image segmentation. In Image Processing,
1995. Proceedings., International Conference on, vol-
ume 3, pages 53 –56 vol.3.
Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes:
Active contour models. International Journal of Com-
puter Vision, 1(4):321–331.
Lee, J.-H., Wu, M.-Y., and Guo, Z.-C. (2010). A tank fish
recognition and tracking system using computer vi-
sion techniques. In Computer Science and Informa-
tion Technology (ICCSIT), volume 4, pages 528–532.
Li, S. Z. (1995). Markov random field modeling in computer
vision. Springer-Verlag, London, UK, UK.
Medina Rodriguez, P., Fernandez Garcia, E., and Diaz Ur-
restarazu, A. (1992). Adaptive method for image seg-
mentation based in local feature. Cybernetics and Sys-
tems, 23(3-4):299–312.
Otsu, N. (1979). A threshold selection method from gray-
level histograms. In IEEE Transactions on Systems,
Man and Cybernetics, pages 62–66.
Roth, S. and Black, M. J. (2005). Fields of experts: A
framework for learning image priors. In In CVPR,
pages 860–867.
Rother, C., Kolmogorov, V., and Blake, A. (2004). Grabcut
- interactive forground extraction using iterated graph
cuts. In ACM Transactions on Graphics, pages 309–
314. ACM Press.
Rui, G., Gang, L., and Yongsheng, S. (2010). A recogni-
tion method of apples based on texture features and
em algorithm. In World Automation Congress (WAC),
2010, pages 225 –229.
Sezgin, M. and Sankur, B. (2004). Survey over image
thresholding techniques and quantitative performance
evaluation. Journal of Electronic Imaging, 13(1):146–
168.
Shi, J. and Malik, J. (2000). Normalized cuts and image
segmentation. In IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, pages 888–905.
Viola, P. A. and Jones, M. J. (2001). Rapid object detection
using a boosted cascade of simple features. In CVPR
(1), pages 511–518.
White, D., Svellingen, C., and Strachan, N. (2006). Auto-
mated measurement of species and length of fish by
computer vision. Fisheries Research, 80(2-3):203–
210.
Wijethunga, P., Samarasinghe, S., Kulasiri, D., and Wood-
head, I. (2008). Digital image analysis based auto-
mated kiwifruit counting technique. In Image and Vi-
sion Computing New Zealand, pages 1 –6.
Zhang, X., Yang, Y.-H., Han, Z., Wang, H., and Gao, C.
(2013). Object class detection: A survey. ACM Com-
put. Surv., 46(1):10:1–10:53.
Zhao, J., Tow, J., and Katupitiya, J. (2005). On-tree fruit
recognition using texture properties and color data. In
Intelligent Robots and Systems, 2005. (IROS 2005).
2005 IEEE/RSJ International Conference on, pages
263 – 268.
Zhu, L.-M., Zhang, Y.-L., Zhang, W., Tao, Z.-C., and Liu,
C.-F. (2012). Fish motion tracking based on rgb color
space and interframe global nerest neighbour. In Auto-
matic Control and Artificial Intelligence (ACAI 2012),
International Conference on, pages 1061–1064.
VISAPP2015-InternationalConferenceonComputerVisionTheoryandApplications
598