111 px
, a region size of 3, tree depth 18 levels, and
minimum samples in leaf nodes 204.
For
MSRC
-21 we found 10 trees, 4527 sam-
ples / image, 500 feature candidates / node, 20 thresh-
old candidates, a box radius of
95 px
, a region size of
12, tree depth 25 levels, and minimum samples in leaf
nodes 38 to yield best results.
7 CONCLUSION
We provide an accelerated random forest implementa-
tion for image labeling research and applications. Our
implementation achieves dense pixel-wise classifica-
tion of
VGA
images in real-time on a
GPU
. Training is
accelerated on
GPU
by a factor of up to 26 compared
to an optimized
CPU
version. The experimental results
show that our fast implementation enables effective
parameter searches that find solutions which outper-
form state-of-the art methods. C
URFIL
prepares the
ground for scientific progress with random forests, e.g.
through research on improved visual features.
REFERENCES
Amit, Y. and Geman, D. (1997). Shape quantization and
recognition with randomized trees. Neural computa-
tion, 9(7):1545–1588.
Bergstra, J., Bardenet, R., Bengio, Y., K
´
egl, B., et al. (2011).
Algorithms for hyper-parameter optimization. In Neu-
ral Information Processing Systems (NIPS).
Breiman, L. (2001). Random forests. Machine learning,
45(1):5–32.
Couprie, C., Farabet, C., Najman, L., and LeCun, Y. (2013).
Indoor semantic segmentation using depth informa-
tion. The Computing Resource Repository (CoRR)
abs/1301.3572.
Hermans, A., Floros, G., and Leibe, B. (2014). Dense 3d se-
mantic mapping of indoor scenes from rgb-d images. In
Int. Conf. on Robotics and Automation (ICRA), Hong
Kong. IEEE.
Ho, T. (1995). Random decision forests. In Int. Conf. on Doc-
ument Analysis and Recognition (ICDAR), volume 1,
pages 278–282. IEEE.
Lepetit, V. and Fua, P. (2006). Keypoint recognition us-
ing randomized trees. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 28(9):1465–1479.
Lepetit, V., Lagger, P., and Fua, P. (2005). Randomized trees
for real-time keypoint recognition. In Computer Vision
and Pattern Recognition (CVPR), Conf. on, volume 2,
pages 775–781.
Liao, Y., Rubinsteyn, A., Power, R., and Li, J. (2013). Learn-
ing random forests on the gpu. In NIPS Workshop
on Big Learning: Advances in Algorithms and Data
Management.
M
¨
uller, A. C. and Behnke, S. (2014). Learning depth-
sensitive conditional random fields for semantic seg-
mentation of rgb-d images. In Int. Conf. on Robotics
and Automation (ICRA), Hong Kong. IEEE.
Rodrigues, J., Kim, J., Furukawa, M., Xavier, J., Aguiar,
P., and Kanade, T. (2012). 6D pose estimation of
textureless shiny objects using random ferns for bin-
picking. In Intelligent Robots and Systems (IROS), Int.
Conf. on, pages 3334–3341. IEEE.
Sharp, T. (2008). Implementing decision trees and forests on
a GPU. In Europ. Conf. on Computer Vision (ECCV),
pages 595–608.
Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio,
M., Moore, R., Kipman, A., and Blake, A. (2011). Real-
time human pose recognition in parts from single depth
images. In Computer Vision and Pattern Recognition
(CVPR), Conf. on, pages 1297–1304.
Shotton, J., Johnson, M., and Cipolla, R. (2008). Semantic
texton forests for image categorization and segmen-
tation. In Computer Vision and Pattern Recognition
(CVPR), Conf. on.
Silberman, N., Hoiem, D., Kohli, P., and Fergus, R.
(2012). Indoor segmentation and support inference
from RGBD images. In Europ. Conf. on Computer
Vision (ECCV), pages 746–760.
Slat, D. and Lapajne, M. (2010). Random Forests for CUDA
GPUs. PhD thesis, Blekinge Institute of Technology.
St
¨
uckler, J., Biresev, N., and Behnke, S. (2012). Semantic
mapping using object-class segmentation of RGB-D
images. In Intelligent Robots and Systems (IROS), Int.
Conf. on, pages 3005–3010. IEEE.
St
¨
uckler, J., Waldvogel, B., Schulz, H., and Behnke, S.
(2013). Dense real-time mapping of object-class se-
mantics from RGB-D video. Journal of Real-Time
Image Processing.
Van Essen, B., Macaraeg, C., Gokhale, M., and Prenger,
R. (2012). Accelerating a random forest classifier:
Multi-core, GP-GPU, or FPGA? In Int. Symp. on Field-
Programmable Custom Computing Machines (FCCM).
IEEE.
Viola, P. and Jones, M. (2001). Rapid object detection using
a boosted cascade of simple features. In Computer
Vision and Pattern Recognition (CVPR), Conf. on.
Wehenkel, L. and Pavella, M. (1991). Decision trees and
transient stability of electric power systems. Automat-
ica, 27(1):115–134.
VISAPP2015-InternationalConferenceonComputerVisionTheoryandApplications
164