embedded with conducting tape helix structure
remains capable to sustain more amount of power in
the outermost liquid crystal section. This essentially
makes the structure possibly more efficient for its
usages like the integrated optic devices for field
coupling and/or in the area of optical sensing.
4 CONCLUSIONS
From the foregoing analyses, it can be inferred that
the LC fiber structure loaded with conducting tape
helix windings would be more useful for
applications in optics industry. This is primarily due
to the reason that the outermost liquid crystal region
becomes more prone to confine higher amount of
power to be used particularly for the evanescent
field based optical applications (e.g. sensing or
coupling of electromagnetic fields). These
conclusive remarks are drawn based on comparing
the results obtained for ordinary LC clad fibers with
radially anisotropic liquid crystal materials.
ACKNOWLEDGEMENTS
The authors are thankful to the Ministry of Higher
Education (Malaysia) for granting the financial
support to the work Also, they are thankful to
Professors B.Y. Majlis and S. Shaari for constant
encouragement and help.
REFERENCES
Trashkeev, S. I., Nyushkov, B. N., 2014. Thermal
enhancement of optical harmonic generation in a fiber-
coupled nematic liquid crystal. Laser Optics 2014 –
IEEE International Conference, pp. 11.
Khoo, I. C., Wood, M., Guenther, B. D., 1996. Nonlinear
liquid crystal optical fiber array for all-optical
switching/limiting. In LEOS 96 – IEEE Lasers and
Electro-Optics Society Annual Meeting, vol. 2, pp.
211212.
Ioannidis, Z. K., Giles, I. P., Bowry, C., 1991. All-fiber
optic intensity modulators using liquid crystals, Appl.
Opt., vol. 30, pp. 328333.
Dolgaleva, K., Wei, S. K. H., Lukishova, S. G., Chen,
S.H., Schwertz, K., Boyd, R.W., 2009. Enhanced laser
performance of cholesteric liquid crystals doped with
oligofluorene dye. J. Opt. Soc. Am. B, vol. 25, pp.
1496–1504.
Wolinski, T. R., Szymanska, A., 2001. Polarimetric
optical fibres with elliptical liquid-crystal core. Meas.
Sci. Technol., vol. 12, pp. 948−951.
Akbulut, M., 2006. Broadband all-order polarization mode
dispersion compensation using liquid-crystal
modulator arrays. J. Lightwave Technol., vol. 24, pp.
251−261.
Gebhart, S. C., Stokes, D. L., Vo-Dinh, T., Mahadevan-
Jansen, A., 2005. Instrumentation considerations in
spectral imaging for tissue demarcation: comparing
three methods of spectral resolution. Proc. SPIE, vol.
5694, pp. 41−52.
Wolinski, T. R., Szaniawska, K., Ertman, S., Lesiak, P.,
Domanski, A.W., Dabrowski, R., Nowinowski-
Kruszelnicki, E., Wojcik, J., 2006. Influence of
temperature and electrical fields on propagation
properties of photonic liquid-crystal fibres. Meas. Sci.
Technol., vol. 17, pp. 985–991.
Wolinski, T. R., Szaniawska, K., Bondarczuk, K., Lesiak,
P., Domanski, A. W., Dabrowski, R., Nowinowski-
Kruszelnicki, E., Wojcik, J., 2005. Propagation
properties of photonic crystal fibers filled with
nematic liquid crystals. Opto-Electron. Rev., vol. 13,
pp. 59–64.
Stratis, D. N., Eland, K. L., Carter, J. C., Tomlinson, S. J.,
Angel, S.M., 2001. Comparison of acousto-optic and
liquid crystal tunable filters for laser-induced
breakdown spectroscopy. Appl. Spectroscop., vol. 55,
pp. 999−1004.
d’Alessandro, A., Asquini, R., Gizzi, C., Bellini, B.,
Beccherelli, R., 2004. Integrated optic devices using
liquid crystals: design and fabrication issues. Proc.
SPIE, vol. 5518, pp. 123−135.
Choudhury, P. K., 2013. Liquid crystal optical fibers for
sensing applications. Proc. SPIE, vol. 8818, pp.
88180E-1–88180E-10.
Choudhury, P. K., Soon, W. K., 2011. On the transmission
by liquid crystal tapered optical fibers. Optik, vol. 122,
pp. 10611068 (2011).
Choudhury, P. K., Yoshino, T., 2004. TE and TM modes
power transmission through liquid crystal optical
fibers. Optik, vol. 115, pp. 4956.
Ghasemi, M., Choudhury, P. K., 2014. Propagation
through complex structured liquid crystal optical
fibers. J. Nanophoton., vol. 8, pp. 083997-1083997-
13.
Ghasemi, M., Choudhury, P. K., 2014. Waves in tape
helix loaded liquid crystal optical fiber. Proc. SPIE,
vol. 9172, pp. 91720G-1–91720G-8.
Snyder, A. W., Rühl, F., 1983. Single-mode, single-
polarization fibers made of birefringent material. J.
Opt. Soc. Am., vol. 73, pp. 11651174.