Learning, New York, Springer.
Bock, R., Gluge, S., Wendemuth, A., Limbrecht, K.,
Walter, S., Hrabal, D. & Traue, H. C. Intraindividual
and interindividual multimodal emotion analyses in
Human-Machine-Interaction. Cognitive Methods in
Situation Awareness and Decision Support
(CogSIMA), 2012 IEEE International Multi-
Disciplinary Conference on, 6-8 March 2012 2012.
59-64.
Cacioppo, J. T. & Tassinary, L. G. 1990. Inferring
psychological significance from physiological signals.
American Psychologist, 45, 16-28.
Chanel, G., Kierkels, J. J. M., Soleymani, M. & Pun, T.
2009. Short-term emotion assessment in a recall
paradigm. International Journal of Human-Computer
Studies, 67, 607-627.
Chang, C.-Y., Chang, C.-W., Zheng, J.-Y. & Chung, P.-C.
2013. Physiological emotion analysis using support
vector regression. Neurocomputing, 122, 79-87.
Cheng, B. 2012. Emotion recognition from physiological
signals using support vector machine. Software
Engineering and Knowledge Engineering: Theory and
Practice. Springer.
Christie, I. C. & Friedman, B. H. 2004. Autonomic
specificity of discrete emotion and dimensions of
affective space: a multivariate approach. International
Journal of Psychophysiology, 51, 143-153.
Crider, A. 2008. Personality and Electrodermal Response
Lability: An Interpretation. Applied Psychophysiology
and Biofeedback, 33, 141-148.
Dongrui, W., Christopher, G. C., Brent, J. L., Shrikanth, S.
N., Michael, E. D., Kelvin, S. O. & Thomas, D. P.
2010. Optimal Arousal Identification and
Classification for Affective Computing Using
Physiological Signals: Virtual Reality Stroop Task.
IEEE Transactions on Affective Computing, 1, 109-
118.
Fairclough, S. H. 2009. Fundamentals of physiological
computing. Interacting with Computers, 21, 133-145.
Frantzidis, C. A., Bratsas, C., Klados, M. A.,
Konstantinidis, E., Lithari, C. D., Vivas, A. B.,
Papadelis, C. L., Kaldoudi, E., Pappas, C. & Bamidis,
P. D. 2010. On the Classification of Emotional
Biosignals Evoked While Viewing Affective Pictures:
An Integrated Data-Mining-Based Approach for
Healthcare Applications. IEEE Transactions on
Information Technology in Biomedicine, 14, 309-318.
Haag, A., Goronzy, S., Schaich, P. & Williams, J. 2004.
Emotion Recognition Using Bio-sensors: First Steps
towards an Automatic System. In: ANDRÉ, E.,
DYBKJAE R, L., MINKER, W. & HEISTERKAMP,
P. (eds.) Affective dialogue systems. Springer Berlin /
Heidelberg.
Hristova, E., Grinberg, M. & Lalev, E. 2009. Biosignal
Based Emotion Analysis of Human-Agent
Interactions. In: ESPOSITO, A. & VÍCH, R. (eds.)
Cross-Modal Analysis of Speech, Gestures, Gaze and
Facial Expressions. Springer Berlin / Heidelberg.
Johannes, B. & Gaillard, A. W. 2014. A methodology to
compensate for individual differences in
psychophysiological assessment. Biological
psychology, 96, 77-85.
Kim, K., Bang, S. & Kim, S. 2004. Emotion recognition
system using short-term monitoring of physiological
signals. Medical & biological engineering &
computing, 42, 419-427.
Kolodyazhniy, V., Kreibig, S. D., Gross, J. J., Roth, W. T.
& Wilhelm, F. H. 2011. An affective computing
approach to physiological emotion specificity: Toward
subject-independent and stimulus-independent
classification of film-induced emotions.
Psychophysiology, 48, 908-922.
Kukolja, D., Popović, S., Horvat, M., Kovač, B. & Ćosić,
K. 2014. Comparative analysis of emotion estimation
methods based on physiological measurements for
real-time applications. International Journal of
Human-Computer Studies.
Lang, P. J., Bradley, M. M. & Cuthbert, B. N. 2008.
International affective picture system (IAPS):
Affective ratings of pictures and instruction manual.
Technical report B-3. University of Florida,
Gainesville, FI.
Lee, K. & Ashton, M. C. 2004. Psychometric Properties of
the HEXACO Personality Inventory. Multivariate
Behavioral Research, 39, 329-358.
Marwitz, M. & Stemmler, G. 1998. On the status of
individual response specificity. Psychophysiology, 35,
1-15.
Myrtek, M. 1998. Metaanalysen zur
psychophysiologischen persönlichkeitsforschyung
[Meta-analysis for psychophysiological personality
research]. In: RÖSLER, F. (ed.) Ergebnisse und
Anwendungen der Psychophysiologie. Göttingen:
Hogrefe Verlag für Psychologie.
Nejtek, V. A. 2002. High and low emotion events
influence emotional stress perceptions and are
associated with salivary cortisol response changes in a
consecutive stress paradigm.
Psychoneuroendocrinology, 27, 337-352.
Novak, D., Mihelj, M. & Munih, M. 2012. A survey of
methods for data fusion and system adaptation using
autonomic nervous system responses in physiological
computing. Interacting with Computers, 24, 154-172.
Picard, R. W., Vyzas, E. & Healey, J. 2001. Toward
Machine Emotional Intelligence: Analysis of Affective
Physiological State. IEEE Transactions on Pattern
Analysis & Machine Intelligence, 23, 1175.
Rani, P., Liu, C., Sarkar, N. & Vanman, E. 2006. An
empirical study of machine learning techniques for
affect recognition in human–robot interaction. Pattern
Analysis & Applications, 9, 58-69.
Russell, J. A. 1980. A circumplex model of affect. Journal
of Personality and Social Psychology, 39, 1161-1178.
Schuster, T., Gruss, S., Rukavina, S., Walter, S. & Traue,
H. C. EEG-based Valence Recognition: What do we
Know About the influence of Individual Specificity?
The Fourth International Conference on Advanced
Cognitive Technologies and Applications
(COGNITIVE 2012), 2012 Nice, France. 71-76.
Stemmler, G. 1997. Selective activation of traits:
PhyCS2015-2ndInternationalConferenceonPhysiologicalComputingSystems
76