50 100 150 200 250 300 350 400
0.3
0.31
0.32
0.33
0.34
0.35
0.36
N
f
Magnitude
50 100 150 200 250 300 350 400
0.49
0.5
0.51
0.52
0.53
0.54
0.55
Phase (rad)
Magnitude
Phase
(a)
50 100 150 200 250 300 350 400
0.65
0.7
0.75
0.8
N
f
Magnitude
50 100 150 200 250 300 350 400
0.1
0.15
0.2
0.25
Phase (rad)
Phase
Magnitude
(b)
Figure 5: Convergence of magnitude and phase of opti-
mized a) R
x1
and b) R
x2
, for different N
f
for structure of
Table 4.
advantages of this method lie in its rapidity as well
as accuracy. By using COMSOL for exact results of
spatial Green’s function for optimization, total CPU-
time is much less than rigorous methods. In gen-
eral, for all planar multilayered waveguide the for-
mulation can be easily derived for all components of
dyadic Green’s function to have reflection coefficients
of guided modes at the end-facet of truncation.
REFERENCES
Chen, Y., Lai, Y., Chong, T. C., and Ho, S.-T. (2012). Exact
solution of facet reflections for guided modes in high-
refractive-index-contrast sub-wavelength waveguide
via a fourier analysis and perturbative series summa-
tion: Derivation and applications. J. Lightw. Technol.,
30(15):2455–2471.
Coleman, T. F. and Li, Y. (1996). An interior trust region ap-
proach for nonlinear minimization subject to bounds.
SIAM journal on optimization, 6(2):418–445.
Derudder, H., Olyslager, F., De Zutter, D., and van den
Berghe, S. (2001). Efficient mode-matching analysis
of discontinuities in finite planar substrates using per-
fectly matched layers. IEEE Trans. Antennas Propag.,
49(2):185 –195.
El-Refaei, H., Betty, I., and Yevick, D. (2000). The appli-
cation of complex Pade approximants to reflection at
optical waveguide facets. IEEE Photon. Technol. Lett.,
12(2):158–160.
Faraji-Dana, R. (1993a). An Efficient and Accurate Green’s
Function Analysis of Packaged Microwave Integrated
Circuits. Thesis (Ph.D.)–University of Waterloo.
Faraji-Dana, R. (1993b). An Efficient and Accurate Green’s
Function Analysis of Packaged Microwave Integrated
Circuits. Thesis (Ph.D.)–University of Waterloo.
Gelin, P., Petenzi, M., and Citerne, J. (1981). Rigorous anal-
ysis of the scattering of surface waves in an abruptly
ended slab dielectric waveguide. IEEE Trans. Microw.
Theory Techn., 29(2):107 – 114.
Hardy, A. (1984). Formulation of two-dimensional
reflectivity calculations for transverse-magnetic-like
modes. J. Opt. Soc. Am. A., 1(7):760–763.
Hua, Y. and Sarkar, T. (1989). Generalized pencil-of-
function method for extracting poles of an EM sys-
tem from its transient response. IEEE Trans. Antennas
Propag., 37(2):229 –234.
Ikegami, T. (1972). Reflectivity of mode at facet and oscil-
lation mode in double-heterostructure injection lasers.
IEEE J. Quantum Electron., 8(6):470–476.
Jamid, H. and Khan, M. (2007). 3-D full-vectorial anal-
ysis of strong optical waveguide discontinuities us-
ing Pade approximants. IEEE J. Quantum Electron.,
43(4):343–349.
Lewin, L. (1975). A method for the calculation of the
radiation-pattern and mode-conversion properties of a
solid-state heterojunction laser. IEEE Trans. Microw.
Theory Techn., 23(7):576–585.
Michalski, K. and Mosig, J. (1997). Multilayered media
Green’s functions in integral equation formulations.
IEEE Trans. Antennas Propagat., 45(3):508 –519.
Parsa, A. and Paknys, R. (2007a). Interior Green’s function
solution for a thick and finite dielectric slab. IEEE
Trans. Antennas Propag., 55(12):3504 –3514.
Parsa, A. and Paknys, R. (2007b). Interior Green’s function
solution for a thick and finite dielectric slab. IEEE
Trans. Antennas Propag., 55(12):3504 –3514.
Rozzi, T. and Veld, G. (1980). Variational treatment of the
diffraction at the facet of d.h. lasers and of dielectric
millimeter wave antennas. IEEE Trans. Microw. The-
ory Techn., 28(2):61–73.
Shishegar, A. A. and Faraji-Dana, R. (2003). A closed-form
spatial Green’s function for finite dielectric structures.
Electromagnetics, 23(7):579–594.
Torabi, A., Shishegar, A. A., and Faraji-Dana, R. (2013).
Application of the characteristic Green’s function
technique in closed-form derivation of spatial Green’s
function of finite dielectric structures. In Compu-
tational Electromagnetics Workshop (CEM), 2013,
pages 54–55.
Torabi, A., Shishegar, A. A., and Faraji-Dana, R. (2014a).
Analysis of modal reflectivity of optical waveguide
end-facets by the characteristic Green’s function tech-
nique. J. Lightw. Technol., 32(6):1168–1176.
Torabi, A., Shishegar, A. A., and Faraji-Dana, R. (2014b).
An efficient closed-form derivation of spatial Green’s
function for finite dielectric structures using character-
istic Green’s function-rational function fitting method.
IEEE Trans. Antennas Propagat., 62(3).
PHOTOPTICS2015-InternationalConferenceonPhotonics,OpticsandLaserTechnology
20