Applied Imaginary Pattern Recognition, pages 275–
281.
Haralick, R. M. (1988). Mathematical morphology and
computer vision. In Proceedings of the IEEE Asilo-
mar Conference on Signals, Systems and Computers,
volume 1, pages 468–479.
Haritaoglu, I., Harwood, D., and Davis, L. (2000). Real-
time surveillance of people and their activities. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 77(8):809–830.
Hsu, H.-H., Yang, W.-M., and Shih, T. K. (2013). People
tracking in a multi-camera environment. In Proceed-
ings of the IEEE Conference Anthology, pages 1–4.
Huang, W., Liu, Z., and Pan, W. (2007). The precise recog-
nition of moving object in complex background. In
Proceedings of 3rd IEEE International Conference on
Natural Computation, volume 2, pages 246–252.
Izadi, M. and Saeedi, P. (2008). Robust region-based back-
ground subtraction and shadow removing using colour
and gradient information. In Proceedings of the 19th
IEEE International Conference on Pattern Recogni-
tion, pages 1–5.
Kettnaker, V. and Zabih, R. (1999). Bayesian multi-camera
surveillance. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, vol-
ume 2, pages 1–5.
Kumar, K. S., Prasad, S., Saroj, P. K., and Tripathi, R. C.
(2010). Multiple cameras using real-time object track-
ing for surveillance and security system. In Proceed-
ings of the IEEE International Conference on Emerg-
ing Trends in Engineering and Technology, pages
213–218.
Lamard, L., Chapuis, R., and Boyer, J.-P. (2013). CPHD
Filter addressing occlusions with pedestrians and ve-
hicles tracking. In Proceedings of the IEEE Inter-
national Intelligent Vehicles Symposium, pages 1125–
1130.
Lee, G. H., Pollefeys, M., and Fraundorfer, F. (2014).
Relative pose estimation for a multi-camera system
with known vertical direction. In Proceedings of the
IEEE International Conference on Computer Vision
and Pattern Recognition, pages 540–547.
M. Kamezaki, Y. Junjie, H. I. S. S. (2014). An autonomous
multi-camera control system using situation-based
role assignment for tele-operated work machines. In
Proceedings of the IEEE International Conference on
Robotics and Automation, pages 5971–5976.
Mavrinac, A. and Chen, X. (2013). Modeling coverage in
camera networks: A survey. International Journal of
Computer Vision, 101(1):205–226.
Olszewska, J. I. (2011). Spatio-temporal visual ontology.
In Proceedings of the 1st EPSRC Workshop on Vision
and Language (VL’2011).
Olszewska, J. I. (2012). Multi-target parametric active con-
tours to support ontological domain representation. In
Proceedings of the RFIA Conference, pages 779–784.
Olszewska, J. I. (2013). Multi-scale, multi-feature vector
flow active contours for automatic multiple-face de-
tection. In Proceedings of the International Confer-
ence on Bio-Inspired Systems and Signal Processing.
Olszewska, J. I. and McCluskey, T. L. (2011). Ontology-
coupled active contours for dynamic video scene un-
derstanding. In Proceedings of the IEEE International
Conference on Intelligent Engineering Systems, pages
369–374.
Parker, J. R. (2010). Algorithms for Image Processing and
Computer Vision. John Wiley and Sons, 2nd edition.
PETS (2001). PETS Dataset. Available online at:
ftp://ftp.pets.rdg.ac.uk/pub/PETS2001.
Remagnino, P., Shihab, A. I., and Jones, G. A. (2004). Dis-
tributed intelligence for multi-camera visual surveil-
lance. Pattern Recognition, 37(4):675–689.
Sin, M., Su, H., Savarese, S., and Fei-Fei, L. (2009).
A multi-view probabilistic model for (3D) object
classes. In Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recog-
nition, pages 1247–1254.
Spehr, J., Rosebrock, D., Mossau, D., Auer, R., Brosig,
S., and Wahl, F. M. (2011). Hierarchical scene un-
derstanding for intelligent vehicles. In Proceedings
of the IEEE International Intelligent Vehicles Sympo-
sium, pages 1142–1147.
Stauffer, C. and Grimson, W. (1999). Adaptive background
mixture model for real-time tracking. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition.
Toyama, K., Krumm, J., Brumitt, B., and Meyers, B.
(1995). Wallflower: Principles and practice of back-
ground maintenance. In Proceedings of the IEEE
International Conference on Computer Vision, vol-
ume 1, pages 255–261.
Travieso, C. M., Dutta, M. K., Sole-Casals, J., and Alonso,
J. B. (2014). Detection and tracking of the human hot
spot. In Proceedings of the International Conference
on Bio-Inspired Systems and Signal Processing, pages
325–330.
Wren, C. R., Azarbayejani, A., Darrell, T., and Pentland,
A. P. (1997). Real-time tracking of the human body.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(7):780–785.
Yao, C., Li, W., and Gao, L. (2009). An efficient mov-
ing object detection algorithm using multi-mask. In
Proceedings of 6th IEEE International Conference on
Fuzzy Systems and Knowledge Discovery, volume 5,
pages 354–358.
Zhou, H. and Kimber, D. (2006). Unusual event detection
via multi-camera video mining. In Proceedings of the
IEEE International Conference on Pattern Recogni-
tion, pages 1161–1166.
Zivkovic, Z. and van der Heijden, F. (2004). Recursive un-
supervised learning of finite mixture models. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 26(5):651–656.
BIOSIGNALS2015-InternationalConferenceonBio-inspiredSystemsandSignalProcessing
384