3 CONCLUSIONS
In this paper, we presented a three dimensional
numerical study on a terahertz frequency multiplier.
This SP based frequency multiplier can provide
terahertz radiation with a comparatively high level
of output power. The process for frequency
multiplication was proposed by studying the
spontaneous SP radiation. This non-relativistic
device neither requires a high operating voltage nor
a high external magnetic field. It can fill up the need
for convenient compact THz radiation source for
diverse range of applications such as spectroscopy
and diagnostics of different media. Simulations on
the generation of SP radiation at THz frequencies
have been performed with the help of the 3D
particle-in-cell (PIC) finite integral method and
results agree very well with analytic ones.
ACKNOWLEDGEMENTS
The authors would like to thank University of
Tabriz.
REFERENCES
Andrews, H. L., Boulware, C., Brau, C., Donohue, J.,
Gardelle, J., & Jarvis, J. (2006). Effect of reflections
and losses in Smith–Purcell free-electron lasers. New
Journal of Physics, 8(11), 289.
Andrews, H. L., & Brau, C. A. (2004). Gain of a Smith-
Purcell free-electron laser. Physical Review Special
Topics - Accelerators and Beams, 7(7), 070701.
Bratman, V. L., Fedotov, A. E., Makhalov, P. B., & Rusin,
F. S. (2009). Smith–Purcell frequency multiplier with
synchronization of radiation from a wide electron
beam. Applied Physics Letters, 94(6), 061501.
Bratman, V. L., Ginzburg, N., & Petelin, M. (1979).
Common properties of free electron lasers. Optics
Communications, 30(3), 409-412.
Bratman, V. L., Makhalov, P., Fedotov, A., &
Khaimovich, I. (2007). Excitation of orotron
oscillations at the doubled frequency of a surface
wave. Radiophysics and Quantum Electronics, 50(10-
11), 780-785.
Cao, M., Liu, W., Wang, Y., & Li, K. (2014). Three-
dimensional theory of Smith-Purcell free-electron
laser with dielectric loaded grating. Journal of Applied
Physics, 116(10), 103104.
Fleming, J. (1974). High-resolution submillimeter-wave
Fourier-transform spectrometry of gases. IEEE
Transactions on Microwave Theory Techniques, 22,
1023-1025.
Gover, A., & Sprangle, P. (1981). A unified theory of
magnetic bremsstrahlung, electrostatic
bremsstrahlung, Compton-Raman scattering, and
Cerenkov-Smith-Purcell free-electron lasers. Quantum
Electronics, IEEE Journal of, 17(7), 1196-1215.
Kerecman, A. J. (1973). The Tungsten-P Type Silicon
Point Contact Diode. Paper presented at the
Microwave Symposium, 1973 IEEE G-MTT
International.
Li, D., Imasaki, K., Gao, X., Yang, Z., & Park, G.-S.
(2007). Reduce the start current of Smith-Purcell
backward wave oscillator by sidewall grating. Applied
Physics Letters, 91(22), 221506.
Li, D., Imasaki, K., Yang, Z., & Park, G.-S. (2006). Three-
dimensional simulation of super-radiant Smith-Purcell
radiation. Applied physics letters, 88(20), 201501.
Liu, W., & Xu, Z. (2014). Simulations of table-top watt-
class 1 THz radiation sources with two-section
periodic structure. Journal of Applied Physics, 115(1),
014503.
Mizuno, K., Ono, S., & Shibata, Y. (1973). Two different
mode interactions in an electron tube with a Fabry-
Perot resonator-The Ledatron. Electron Devices, IEEE
Transactions on, 20(8), 749-752.
Price, E., Walsh, J., & Kimmitt, M. (1991). Short
submillimeter operation of the Planar Orotron.
Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 304(1), 133-136.
Rostami, A., Rasooli, H., & Baghban, H. (2010).
Terahertz technology: fundamentals and applications
(Vol. 77): Springer.
Rusin, F., & Bogomolov, G. (1966). Generation of
electromagnetic oscillations in an open resonator.
JETP Letters, 4, 160-162.
Schächter, L., & Ron, A. (1988). Exponential gain in a
Smith–Purcell amplifier. Applied physics letters,
53(10), 828-830.
Shin, Y.-M., So, J.-K., Jang, K.-H., Won, J.-H.,
Srivastava, A., & Park, G.-S. (2007). Superradiant
terahertz Smith-Purcell radiation from surface
plasmon excited by counterstreaming electron beams.
Applied Physics Letters, 90(3), 031502.
Siegel, P. H. (2002). Terahertz technology. IEEE
Transactions on microwave theory and techniques,
50(3), 910-928.
Smith, S. J., & Purcell, E. M. (1953). Visible Light from
Localized Surface Charges Moving across a Grating.
Physical Review, 92(4), 1069-1069.
Urata, J., Goldstein, M., Kimmitt, M. F., Naumov, A.,
Platt, C., & Walsh, J. E. (1998). Superradiant Smith-
Purcell Emission. Physical Review Letters, 80(3), 516-
519.
3-DAnalysisofTerahertzFrequencyMultiplierExcitedDuetoInteractionofConvectionElectronBeamandSurface
Waves-(Smith-PurcellEffect)
39