Comput. Sci., 233, 43-57. doi:
10.1016/j.entcs.2009.02.060
Ares, M. E., Parapar, J., & Barreiro, Á. (2012). An
experimental study of constrained clustering
effectiveness in presence of erroneous constraints.
Information Processing & Management, 48(3), 537-
551.
Bair, E. (2013). Semi-supervised clustering methods.
Wiley Interdisciplinary Reviews: Computational
Statistics, 5(5), 349-361. doi: 10.1002/wics.1270
Basu, S., Banerjee, A., & Mooney, R. (2004). Active
Semi-Supervision for Pairwise Constrained Clustering
Proceedings of the 2004 SIAM International
Conference on Data Mining (pp. 333-344).
Bilenko, M., & Mooney, R. J. (2003). Adaptive duplicate
detection using learnable string similarity measures.
Paper presented at the Proceedings of the ninth ACM
SIGKDD international conference on Knowledge
discovery and data mining, Washington, D.C.
Chong, C. Y., Lee, S. P., & Ling, T. C. (2013). Efficient
software clustering technique using an adaptive and
preventive dendrogram cutting approach. Information
and Software Technology, 55(11), 1994-2012.
Chong, C. Y., Lee, S. P., & Ling, T. C. (2014). Prioritizing
and Fulfilling Quality Attributes For Virtual Lab
Development Through Application of Fuzzy Analytic
Hierarchy Process and Software Development
Guidelines. Malaysian Journal of Computer Science,
27(1).
Davidson, I., & Ravi, S. S. (2009). Using instance-level
constraints in agglomerative hierarchical clustering:
theoretical and empirical results. Data Mining and
Knowledge Discovery, 18(2), 257-282. doi:
10.1007/s10618-008-0103-4
Davies, D. L., & Bouldin, D. W. (1979). A Cluster
Separation Measure. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, PAMI-1(2), 224-
227. doi: 10.1109/TPAMI.1979.4766909
Deursen, A. v., & Kuipers, T. (1999). Identifying objects
using cluster and concept analysis. Paper presented at
the Proceedings of the 21st international conference on
Software engineering, Los Angeles, California, USA.
Fokaefs, M., Tsantalis, N., Chatzigeorgiou, A., & Sander,
J. (2009). Decomposing Object-Oriented Class
Modules Using an Agglomerative Clustering
Technique. IEEE International Conference on
Software Maintenance, 93-101.
Fokaefs, M., Tsantalis, N., Stroulia, E., & Chatzigeorgiou,
A. (2012). Identification and application of Extract
Class refactorings in object-oriented systems. Journal
of Systems and Software, 85(10), 2241-2260. doi:
10.1016/j.jss.2012.04.013
Hong, Z., & Yiu-ming, C. (2012). Semi-Supervised
Maximum Margin Clustering with Pairwise
Constraints. Knowledge and Data Engineering, IEEE
Transactions on, 24(5), 926-939. doi:
10.1109/TKDE.2011.68
Kestler, H., Kraus, J., Palm, G., & Schwenker, F. (2006).
On the Effects of Constraints in Semi-supervised
Hierarchical Clustering. In F. Schwenker & S. Marinai
(Eds.), Artificial Neural Networks in Pattern
Recognition (Vol. 4087, pp. 57-66): Springer Berlin
Heidelberg.
Klein, D., Kamvar, S. D., & Manning, C. D. (2002). From
Instance-level Constraints to Space-Level Constraints:
Making the Most of Prior Knowledge in Data
Clustering. Paper presented at the Proceedings of the
Nineteenth International Conference on Machine
Learning.
Maqbool, O., & Babri, H. A. (2007). Hierarchical
Clustering for Software Architecture Recovery.
Software Engineering, IEEE Transactions on, 33(11),
759-780. doi: 10.1109/TSE.2007.70732
MathArc - Ensuring Access to Mathematics Over Time.
(August 2009).
Mitchell, B. S., & Mancoridis, S. (2001, 2001).
Comparing the decompositions produced by software
clustering algorithms using similarity measurements.
Paper presented at the Software Maintenance, 2001.
Proceedings. IEEE International Conference on.
Miyamoto, S. (2012). An Overview of Hierarchical and
Non-hierarchical Algorithms of Clustering for Semi-
supervised Classification. In V. Torra, Y. Narukawa,
B. López, & M. Villaret (Eds.), Modeling Decisions
for Artificial Intelligence (Vol. 7647, pp. 1-10):
Springer Berlin Heidelberg.
Shental, N., & Weinshall, D. (2003). Learning Distance
Functions using Equivalence Relations. Paper
presented at the In Proceedings of the Twentieth
International Conference on Machine Learning.
Sørensen, T. (1948). A Method of Establishing Groups of
Equal Amplitude in Plant Sociology Based on
Similarity of Species Content and Its Application to
Analyses of the Vegetation on Danish Commons: I
kommission hos E. Munksgaard.
Wagstaff, K., & Cardie, C. (2000). Clustering with
Instance-level Constraints. Paper presented at the
Proceedings of the Seventeenth International
Conference on Machine Learning.
Wiggerts, T. A. (1997, 6-8 Oct 1997). Using clustering
algorithms in legacy systems remodularization. Paper
presented at the Reverse Engineering, 1997.
Proceedings of the Fourth Working Conference on.
Zhihua, W., & Tzerpos, V. (2004, 24-26 June 2004). An
effectiveness measure for software clustering
algorithms. Paper presented at the Program
Comprehension, 2004. Proceedings. 12th IEEE
International Workshop on.
ENASE2015-10thInternationalConferenceonEvaluationofNovelSoftwareApproachestoSoftwareEngineering
188