vering time-interval sequential patterns in sequence
databases, Expert Systems with Applications 25(3), pp.
343-354.
Codd, E. F., Codd, S. B., and C. T. Salley, 1993. Providing
OLAP (On-Line Analytical Processing) to User-
Analysts: An IT Mandate, E. F. Codd and Associates
(sponsored by Arbor Software Corp.).
Höppner, F., Klawonn, F., 2001. Finding informative rules
in interval sequences. Hoffmann, F., Adams, N., Fisher,
D., Guimarães, G., Hand, D.J. (eds.) IDA2001. LNCS,
vol. 2189, Springer, Heidelberg, pp. 123-132.
Kimball, R. and Ross, M., 2013. The data warehouse
toolkit: The definitive guide to dimensional modeling,
3rd Edition, Wiley Computer Publishing.
Kline, N. and Snodgrass, R. T., 1995. Computing temporal
aggregates, 11th Int. Conf. on Data Engineering (ICDE
1995), Taipei, China, 06.-10. March, pp. 222-231.
Koncilia, C., Morzy, T., Wrembel, R., and Eder J., 2014.
Interval OLAP: Analyzing Interval Data, Data
Warehousing and Knowledge Discovery (DaWaK
2014), Volume 8646, Springer Int., pp. 233-244
Kotsifakos, A., Papapetrou, and P., Athitsos, V., 2013.
IBSM: Interval-based Sequence Matching, 13th SIAM
Int. Conf. on Data Mining (SDM13), Austin, Texas,
USA, 02.-04. May.
Kriegel, H.-P., Pötke, M., and Seidl, T. (2001). Object-
Relational Indexing for General Interval Relationships,
7th Int. Symposium on Spatial and Temporal Databases
(SSTD 2001), Los Angeles, California, 12.-15. July, pp.
522-542.
Mazón, J.-N., Lichtenbörger, J., and Trujillo J., 2008.
Solving summarizability problems in fact-dimension
relationships for multidimensional models, 11th Int.
Workshop on Data Warehousing and OLAP (DOLAP
'08). Napa Valley, California, USA, 26.-30. October.
pp. 57-64.
Meisen, P., Meisen, T., Recchioni, M., Schilberg, D.,
Jeschke, S., 2014. Modeling and Processing of Time
Interval Data for Data-Driven Decision Support, IEEE
Int. Conf. on Systems, Man, and Cybernetics, San
Diego, California, USA, 04.-08. October.
Meisen, P., Keng, D., Meisen, T., Recchioni, M., Jeschke,
S., 2015. Bitmap-Based On-Line Analytical Processing
of Time Interval Data, 12th Int. Conf. on Information
Technology. Las Vegas, Nevada, USA, 13.-15. April.
Mörchen, F., 2006. A better tool than Allen’s relations for
expressing temporal knowledge in interval data, 12th
ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining, Philadelphia, Pennsylvania, USA.
Mörchen, F., 2009. Temporal pattern mining in symbolic
time point and time interval data, IEEE Symp. on Com-
putational Intelligence and Data Mining (CIDM 2009),
Nashville, Tennessee, USA, 30. March-2. April.
Pedersen, T. B. 2000, Aspects of data modeling and query
processing for complex multidimensional data, Ph.D.
thesis, Aalborg Universitetsforlag, Aalborg.
Publication: Department of Computer Science,
Aalborg Univ., no. 4.
Papapetrou, P., Kollios, G., Sclaroff S., and Gunopulos, D.,
2005. Discovering Frequent Arrangements of Temporal
Intervals, 5th IEEE Int. Conf. on Data Mining
(ICDM’05), IEEE Press, pp. 354-361.
Papapetrou, P., Kollios, G., Sclaroff S., and Gunopulos D.,
2009. Mining Frequent Arrangements of Temporal
Intervals, Knowledge and Information Systems, vol. 21,
no. 2, pp. 133-171.
Rafiei, D. and Mendelzon, A. O., 2000. Querying Time
Series Data Based on Similarity, IEEE Transactions on
Knowledge and Data Engineering, 12(5).
Spofford, G., Harinath, S., Webb, C., Huang, D. H., and
Civardi, F., 2006. MDX-Solutions: With Microsoft
SQL Server Analysis Services 2005 and Hyperion
Essbase, John Wiley & Sons, ISBN 0471748080.
ICEIS2015-17thInternationalConferenceonEnterpriseInformationSystems
66