• introduction of the hyper-heuristic principle to
planning, creation of a stronger planner than sim-
ple portfolios
• contribution to algorithm selection problem in
planning (especially identifying meta-features of
search problems)
ACKNOWLEDGEMENT
The research is supported by the Grant Agency of
Charles University under contract no. 390214 and it
is also supported by SVV project number 260 104.
REFERENCES
Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-
time analysis of the multiarmed bandit problem. Ma-
chine Learning, 47(2-3):235–256.
Brie, A. H. and Morignot, P. (2005). Genetic planning using
variable length chromosomes. In Biundo, S., Myers,
K. L., and Rajan, K., editors, ICAPS, pages 320–329.
AAAI.
Chaslot, G., Bakkes, S., Szita, I., and Spronck, P. (2008).
Monte-carlo tree search: A new framework for game
ai. In Proceedings of the 4th Artificial Intelligence
for Interactive Digital Entertainment conference (AI-
IDE), pages 216–217. AAAI Press.
Edelkamp, S. (2006). Automated creation of pattern
database search heuristics. In Edelkamp, S. and
Lomuscio, A., editors, MoChArt, volume 4428 of
Lecture Notes in Computer Science, pages 35–50.
Springer.
Edelkamp, S. and Schrdl, S. (2012). Heuristic Search - The-
ory and Applications. Academic Press.
Genesereth, M. R., Love, N., and Pell, B. (2005). General
game playing: Overview of the aaai competition. AI
Magazine, 26(2):62–72.
Ghallab, M., Nau, D., and Traverso, P. (2004). Automated
Planning: Theory and Practice. Morgan Kaufmann
Publishers, Amsterdam.
Hamadi, Y., Monfroy, E., and Saubion, F. (2012). Au-
tonomous search. Springer-Verlag.
Haslum, P., Botea, A., Helmert, M., Bonet, B., and Koenig,
S. (2007). Domain-independent construction of pat-
tern database heuristics for cost-optimal planning. In
AAAI, pages 1007–1012. AAAI Press.
Helmert, M. and Domshlak, C. (2009). Landmarks, critical
paths and abstractions: What’s the difference anyway?
In Gerevini, A., Howe, A. E., Cesta, A., and Refanidis,
I., editors, ICAPS. AAAI.
Hoffmann, J. (2011). Where Ignoring Delete Lists
Works, Part II: Causal Graphs. In 21st International
Conference on Automated Planning and Scheduling,
Freiburg, Allemagne.
Kocsis, L. and Szepesv´ari, C. (2006). Bandit based monte-
carlo planning. In Proceedings of the 15th Eu-
ropean Conference on Machine Learning (ECML),
pages 283–293. Springer Verlag.
Korf, R. E., Reid, M., and Edelkamp, S. (2001). Time com-
plexity of iterative-deepening-a
*
. Artif. Intell., 129(1-
2):199–218.
Nakhost, H. and M¨uller, M. (2009). Monte-carlo explo-
ration for deterministic planning. In Proceedings of
the International Joint Conference on Artificial Intel-
ligence (IJCAI), pages 1766–1771.
Olaya, A., L´opez, C., and Jim´enez, S. (visited December 10,
2014). International planning competition. [online].
Pommerening, F. and Helmert, M. (2013). Incremental lm-
cut. In Borrajo, D., Kambhampati, S., Oddi, A., and
Fratini, S., editors, ICAPS. AAAI.
Pommerening, F., Rger, G., and Helmert, M. (2013). Get-
ting the most out of pattern databases for classical
planning. In Rossi, F., editor, IJCAI. IJCAI/AAAI.
Pommerening, F., Rger, G., Helmert, M., and Bonet, B.
(2014). Lp-based heuristics for cost-optimal planning.
In ICAPS. AAAI.
Rothlauf, F. (2006). Representations for genetic and evolu-
tionary algorithms (2. ed.). Springer.
Rothlauf, F. (2011). Design of Modern Heuristics. Natural
Computing Series. Springer.
Schadd, M. P. D., Winands, M. H. M., van den Herik,
H. J., Chaslot, G. M. J.-B., and Uiterwijk, J. W. H. M.
(2008). Single-player monte-carlo tree search. In Pro-
ceedings of the 6th international conference on Com-
puters and Games (CG ’08), volume 5131 of LNCS,
pages 1–12. Springer Verlag.
Sebald, A. V. and Chellapilla, K. (1998). On making prob-
lems evolutionarily friendly - part 2: Evolving the
most convenient coordinate systems within which to
pose (and solve) the given problem. In Porto, V. W.,
Saravanan, N., Waagen, D. E., and Eiben, A. E.,
editors, Evolutionary Programming, volume 1447 of
Lecture Notes in Computer Science, pages 281–290.
Springer.
Shi, L. and Rasheed, K. (2010). A survey of fitness ap-
proximation methods applied in evolutionary algo-
rithms. In Tenne, Y. and Goh, C.-K., editors, Compu-
tational Intelligence in Expensive Optimization Prob-
lems, volume 2 of Adaptation Learning and Optimiza-
tion, pages 3–28. Springer Berlin Heidelberg.
Simon, D. (2013). Evolutionary Optimization Algorithms.
Wiley.
Solano, M. and Jonyer, I. (2007). Performance analysis of
evolutionary search with a dynamic restart policy. In
Wilson, D. and Sutcliffe, G., editors, FLAIRS Confer-
ence, pages 186–187. AAAI Press.
Toropila, D., Dvoˇr´ak, F., Trunda, O., Hanes, M., and Bart´ak,
R. (2012). Three approaches to solve the petrobras
challenge: Exploiting planning techniques for solving
real-life logistics problems. In Proceedings of 24th
IEEE International Conference on Tools with Artifi-
cial Intelligence (ICTAI), pages 191–198. IEEE Con-
ference Publishing Services.
AlternativeApproachestoPlanning
33