lus sensitivity testing the mental state of the subject
is of importance. Available data such as the pupil
dilation, fatigue waves (Henson and Emuh, 2010),
saccade length differences (Di Stasi et al., 2014) and
blink rate may give important insight into the data and
even yield e.g. cognitive workload weighted attention
maps.
ACKNOWLEDGEMENTS
We want to thank the department of art history at
the university of Vienna, especially Johanna Aufreiter
and Caroline Fuchs for the inspiring collaboration.
The project was partly financed by the the WWTF
(Project CS11-023 to Helmut Leder and Raphael
Rosenberg).
REFERENCES
Blignaut, P. (2009). Fixation identification: The optimum
threshold for a dispersion algorithm. Attention, Per-
ception, & Psychophysics, 71(4):881–895.
Brinkmann, H., Commare, L., Leder, H., and Rosenberg, R.
(2014). Abstract art as a universal language?
Cristino, F., Math
ˆ
ot, S., Theeuwes, J., and Gilchrist, I. D.
(2010). ScanMatch: a novel method for compar-
ing fixation sequences. Behavior research methods,
42(3):692–700.
Di Stasi, L. L., McCamy, M. B., Macknik, S. L., Mankin,
J. a., Hooft, N., Catena, A., and Martinez-Conde, S.
(2014). Saccadic eye movement metrics reflect surgi-
cal residents’ fatigue. Annals of surgery, 259(4):824–
9.
Henson, D. B. and Emuh, T. (2010). Monitoring vigilance
during perimetry by using pupillography. Investiga-
tive ophthalmology & visual science, 51(7):3540–3.
Kasneci, E., Kasneci, G., K
¨
ubler, T. C., and Rosenstiel, W.
(2014a). The applicability of probabilistic methods
to the online recognition of fixations and saccades in
dynamic scenes. In Proceedings of the Symposium on
Eye Tracking Research and Applications, pages 323–
326. ACM.
Kasneci, E., Kasneci, G., K
¨
ubler, T. C., and Rosenstiel, W.
(2015). Online recognition of fixations, saccades, and
smooth pursuits for automated analysis of traffic haz-
ard perception. In Artificial Neural Networks, pages
411–434. Springer.
Kasneci, E., Sippel, K., Aehling, K., Heister, M., Rosen-
stiel, W., Schiefer, U., and Papageorgiou, E. (2014b).
Driving with binocular visual field loss? a study on
a supervised on-road parcours with simultaneous eye
and head tracking. PloS one, 9(2):e87470.
Kasneci, E., Sippel, K., Aehling, K., Heister, M., Rosen-
stiel, W., Schiefer, U., and Papageorgiou, E. (2014c).
Homonymous visual field loss and its impact on vi-
sual exploration - a supermarket study. Translational
Vision Science and Technology, In Press.
Klein, C., Betz, J., Hirschbuehl, M., Fuchs, C., Schmiedtov,
B., Engelbrecht, M., Mueller-Paul, J., and Rosenberg,
R. (2014). Describing art? an interdisciplinary ap-
proach to the effects of speaking on gaze movements
during the beholding of paintings.
K
¨
ubler, T. C., Bukenberger, D. R., Ungewiss, J., W
¨
orner,
A., Rothe, C., Schiefer, U., Rosenstiel, W., and Kas-
neci, E. (2014). Towards automated comparison of
eye-tracking recordings in dynamic scenes. In EUVIP
2014.
Pernice, K. and Nielsen, J. (2009). How to conduct eye-
tracking studies. Nielsen Norman Group.
Rosenberg, R. (2014). Blicke messen. vorschl
¨
age f
¨
ur
eine empirische bildwissenschaft. Jahrbuch der Bay-
erischen Akademie der Sch
¨
onen K
¨
unste, 27:71–86.
Salvucci, D. D. and Goldberg, J. H. (2000). Identifying
fixations and saccades in eye-tracking protocols. In
Proceedings of the 2000 symposium on Eye tracking
research & applications, pages 71–78. ACM.
Santella, A. and DeCarlo, D. (2004). Robust clustering of
eye movement recordings for quantification of visual
interest. Proceedings of the Eye tracking research &
applications symposium on Eye tracking research &
applications - ETRA’2004, pages 27–34.
Sippel, K., Kasneci, E., Aehling, K., Heister, M., Rosen-
stiel, W., Schiefer, U., and Papageorgiou, E. (2014).
Binocular glaucomatous visual field loss and its im-
pact on visual exploration-a supermarket study. PloS
one, 9(8):e106089.
Tafaj, E., Kasneci, G., Rosenstiel, W., and Bogdan, M.
(2012). Bayesian online clustering of eye movement
data. In Proceedings of the Symposium on Eye Track-
ing Research and Applications, pages 285–288. ACM.
Tafaj, E., K
¨
ubler, T. C., Kasneci, G., Rosenstiel, W., and
Bogdan, M. (2013). Online classification of eye track-
ing data for automated analysis of traffic hazard per-
ception. In Artificial Neural Networks and Machine
Learning–ICANN 2013, pages 442–450. Springer.
Tafaj, E., K
¨
ubler, T. C., Peter, J., Rosenstiel, W., Bogdan,
M., and Schiefer, U. (2011). Vishnoo: An open-
source software for vision research. In Computer-
Based Medical Systems (CBMS), 2011 24th Interna-
tional Symposium on, pages 1–6. IEEE.
Eyetrace2014-EyetrackingDataAnalysisTool
219