REFERENCES
Beucher, S. and Meyer, F. (1993). The morphological ap-
proach to segmentation: the watershed transformation.
Mathematical morphology in image processing. Opti-
cal Engineering, 34:433–481.
Cristani, M., Farenzena, M., Bloisi, D., and Murino,
V. (2010). Background subtraction for automated
multisensor surveillance: A comprehensive review.
EURASIP Journal on Advances in Signal Processing,
2010(1):343057.
Doll
´
ar, P., Wojek, C., Schiele, B., and Perona, P. (2012).
Pedestrian detection: An evaluation of the state of the
art. PAMI, 34.
Eshel, R. and Moses, Y. (2010). Tracking in a dense crowd
using multiple cameras. International Journal of Com-
puter Vision, 88(1):129–143.
Evans, M., Li, L., and Ferryman, J. (2012). Suppression of
detection ghosts in homography based pedestrian detec-
tion. In Advanced Video and Signal-Based Surveillance
(AVSS), 2012 IEEE Ninth International Conference on,
pages 31–36.
Fleuret, F., Berclaz, J., Lengagne, R., and Fua, P. (2008).
Multicamera people tracking with a probabilistic occu-
pancy map. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 30(2):267–282.
Fraley, C. and Raftery, A. E. (2007). Bayesian regulariza-
tion for normal mixture estimation and model-based
clustering. J. Classif., 24(2):155–181.
Khan, S. and Shah, M. (2009). Tracking multiple occluding
people by localizing on multiple scene planes. Pattern
Analysis and Machine Intelligence, IEEE Transactions
on, 31(3):505–519.
Li, Y., Wu, B., and Nevatia, R. (2008). Human detection by
searching in 3d space using camera and scene knowl-
edge. In Pattern Recognition, 2008. ICPR 2008. 19th
International Conference on, pages 1–5.
Liu, J., Collins, R. T., and Liu, Y. (2013). Robust auto-
calibration for a surveillance camera network. IEEE
Winter Conference on Applications of Computer Vision,
0:433–440.
Manning, C. D., Raghavan, P., and Sch
¨
utze, H. (2008). In-
troduction to Information Retrieval. Cambridge Uni-
versity Press, New York, NY, USA.
Mehmood, M. O., Ambellouis, S., and Achard, C. (2014).
Ghost pruning for people localization in overlapping
multicamera systems. In VISAPP (2), pages 632–639.
PETS (2009). Pets dataset: Performance
evaluation of tracking and surveillance.
http://www.cvg.rdg.ac.uk/PETS2009/a.html. [Online].
Ren, J., Xu, M., and Smith, J. (2012). Pruning phantom de-
tections from multiview foreground intersection. In Im-
age Processing (ICIP), 2012 19th IEEE International
Conference on, pages 1025–1028.
Scott, D. W. (1992). Multivariate Density Estimation: The-
ory, Practice, and Visualization. Wiley, 1 edition.
Sokal, R. R. and Michener, C. D. (1958). A statistical method
for evaluating systematic relationships. University of
Kansas Scientific Bulletin, 28:1409–1438.
Tsai, R. Y. (1992). Radiometry. chapter A Versatile Camera
Calibration Technique for High-accuracy 3D Machine
Vision Metrology Using Off-the-shelf TV Cameras and
Lenses, pages 221–244. Jones and Bartlett Publishers,
Inc., USA.
Utasi, A. and Benedek, C. (2011). A 3-d marked point pro-
cess model for multi-view people detection. In Com-
puter Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pages 3385–3392.
Utasi, A. and Benedek, C. (2013). A bayesian approach on
people localization in multicamera systems. Circuits
and Systems for Video Technology, IEEE Transactions
on, 23(1):105–115.
Yao, J. and Odobez, J. (2007). Multi-layer background
subtraction based on color and texture. In Computer
Vision and Pattern Recognition, 2007. CVPR ’07. IEEE
Conference on, pages 1–8.
LaunchTheseManhuntsShapingtheSynergyMapsforMulti-cameraDetection
535