ACKNOWLEDGEMENTS
The authors wish to thank the reviewers for their care-
ful reading of the manuscript and helpful comments.
This work is part of the SUMMER Marie Curie Re-
search Training Network (PITN-GA-2011-290148),
which is funded by the 7th Framework Programme
of the European Commission (FP7-PEOPLE-2011-
ITN). The centre of excellence, VRVis, is financed by
COMET – Competence Centers for Excellent Tech-
nologies by BMVIT, BMWFJ and ZIT – The Tech-
nology Agency of the City of Vienna. The COMET
Programme is managed by FFG.
REFERENCES
Andrew, A. M. (1979). Another efficient algorithm for con-
vex hulls in two dimensions. Information Processing
Letters, 9(5):216–219.
Becker, R. A. and Cleveland, W. S. (1987). Brushing scat-
terplots. Technometrics, 29(2):127–142.
Doleisch, H., Gasser, M., and Hauser, H. (2003). Inter-
active feature specification for focus+ context visual-
ization of complex simulation data. In Proceedings
of the symposium on Data visualisation 2003, pages
239–248. Eurographics Association.
Doleisch, H. and Hauser, H. (2002). Smooth brushing for
focus+context visualization of simulkation data in 3d.
Elmqvist, N., Dragicevic, P., and Fekete, J.-D. (2008).
Rolling the dice: Multidimensional visual explo-
ration using scatterplot matrix navigation. Visualiza-
tion and Computer Graphics, IEEE Transactions on,
14(6):1539–1148.
Estivill-Castro, V. (2002). Why so many clustering algo-
rithms: A position paper. SIGKDD Explor. Newsl.,
4(1):65–75.
Fisherkeller, M. A., Friedman, J. H., and Tukey, J. W.
(1988). Prim-9: An interactive multi-dimensional data
display and analysis system. In In Dynamic Graphics
for Statistics, pages 111–120.
Inselberg, A. (2009). Parallel coordinates. Springer.
Konyha, Z., Matkovic, K., Gracanin, D., Jelovic, M., and
Hauser, H. (2006). Interactive visual analysis of fam-
ilies of function graphs. Visualization and Computer
Graphics, IEEE Transactions on, 12(6):1373–1385.
Li, J., Martens, J.-B., and Van Wijk, J. J. (2010). Judging
correlation from scatterplots and parallel coordinate
plots. Information Visualization, 9(1):13–30.
Martin, A. R. and Ward, M. O. (1995). High dimen-
sional brushing for interactive exploration of multi-
variate data. In Proceedings of the 6th Conference on
Visualization’95, page 271. IEEE Computer Society.
Mart
´
ınez-G
´
omez, E., Richards, M. T., and Richards, D. S. P.
(2014). Distance correlation methods for discovering
associations in large astrophysical databases. The As-
trophysical Journal, 781(1):39.
Matkovic, K., Freiler, W., Gracanin, D., and Hauser, H.
(2008). Comvis: A coordinated multiple views sys-
tem for prototyping new visualization technology. In
Information Visualisation, 2008. IV ’08. 12th Interna-
tional Conference, pages 215–220.
Moreira, A. and Santos, M. Y. (2007). Concave hull: A
k-nearest neighbours approach for the computation
of the region occupied by a set of points. Proceed-
ings of the 2nd International Conference on Computer
Graphics Theory and Applications.
Nunes, M., Rowland, B., Schlachter, M., Ken, S., Matkovic,
K., Laprie, A., and B
¨
uhler, K. (2014). An integrated
visual analysis system for fusing mr spectroscopy and
multi-modal radiology imaging. In Proceedings of
IEEE VAST 2014.
Oeltze, S., Doleisch, H., Hauser, H., and Weber, G. (2012).
Interactive visual analysis of scientific data. Tutorial
at the IEEE VisWeek 2012.
Pratt, J., Busse, A., Mueller, W.-C., Chapman, S., and
Watkins, N. (2014). Anomalous dispersion of la-
grangian particles in local regions of turbulent flows
revealed by convex hull analysis. arXiv preprint
arXiv:1408.5706.
Rensink, R. A. and Baldridge, G. (2010). The perception
of correlation in scatterplots. volume 29, pages 1203–
1210. Wiley Online Library.
Roberts, J. C. (2007). State of the art: Coordinated & mul-
tiple views in exploratory visualization. In Coordi-
nated and Multiple Views in Exploratory Visualiza-
tion, 2007. CMV’07. Fifth International Conference
on, pages 61–71. IEEE.
Sainath, T. N., Nahamoo, D., Kanevsky, D., Ramabhad-
ran, B., and Shah, P. (2011). A convex hull ap-
proach to sparse representations for exemplar-based
speech recognition. In Automatic Speech Recognition
and Understanding (ASRU), 2011 IEEE Workshop on,
pages 59–64. IEEE.
Sedlmair, M., Isenberg, P., Baur, D., Mauerer, M., Pigorsch,
C., and Butz, A. (2011). Cardiogram: visual analyt-
ics for automotive engineers. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, pages 1727–1736. ACM.
Sedlmair, M., Munzner, T., and Tory, M. (2013). Empirical
guidance on scatterplot and dimension reduction tech-
nique choices. Visualization and Computer Graphics,
IEEE Transactions on, 19(12):2634–2643.
Wang, B., Ruchikachorn, P., and Mueller, K. (2013).
Sketchpadn-d: WYDIWYG sculpting and editing in
high-dimensional space. CoRR, abs/1308.0762.
Wilderjans, T. F., Ceulemans, E., and Meers, K. (2013).
Chull: A generic convex-hull-based model selection
method. Behavior research methods, 45(1):1–15.
Wilkinson, L., Anand, A., and Grossman, R. (2006). High-
dimensional visual analytics: Interactive exploration
guided by pairwise views of point distributions. Visu-
alization and Computer Graphics, IEEE Transactions
on, 12(6):1363–1372.
ConvexHullBrushinginScatterPlots-Multi-dimensionalCorrelationAnalysis
189