nenson et al., 2013) and MultiRes (Park et al., 2010),
it is only at the point where only half the detec-
tions are correct (precision of 0.5). For most appli-
cations the required precision is significantly higher.
For MultiRes, no evaluation speed is mentioned in
(Park et al., 2010), and (Benenson et al., 2013) (the
Roerei-detector) claims an evaluation speed of 5Hz-
20Hz while using GPU-hardware.
Table 3: Comparison of evaluation speed of the combined
algorithms.
640x480 1280x960 1600x1200
HOG 15.1 fps 4.1 fps 2.66 fps
ICF 10.71 fps 2.12 fps 1.37 fps
DPM Half
8.63 fps 1.30 fps 0.82 fps
Pool HOG+DPM 6.8 fps 0.57 fps 0.31 fps
Pool HOG+ICF 7.65 fps 1.60 fps 1.03 fps
Pool ICF+DPM 7 fps 0.54 fps 0.29 fps
Combinator HOG+DPM 6.8 fps 0.57 fps 0.31 fps
Combinator HOG+ICF 7.57 fps 1.57 fps 1.03 fps
Combinator ICF+DPM 6.78 fps 0.53 fps 0.29 fps
Table 4: Comparison of memory-use when running the
pedestrian detection algorithms.
640x480 1280x960 1600x1200
HOG 42.9MB 141.5 MB 243.4 MB
ICF 163.1 MB 446.4 MB 659.4 MB
DPM Half 82.72 MB 240.3 MB 429.2 MB
Pool HOG+DPM 80.2 MB 261 MB 424 MB
Pool HOG+ICF
162 MB 428 MB 657 MB
Pool ICF+DPM 105 MB 318 MB 505 MB
Combinator HOG+DPM 82.2 MB 264 MB 424 MB
Combinator HOG+ICF
174 MB 420 MB 694 MB
Combinator ICF+DPM 124 MB 336 MB 482 MB
5 CONCLUSION
In this paper we present for the first time a full-
pipeline implementation of detection combination as
an open framework. In contrast to the traditional ap-
proach of improving detection accuracy by optimis-
ing a single detector, we use a technique of com-
bining multiple pedestrian detectors instead, a tech-
nique proposed in (De Smedt et al., 2014). Herefor
we use the Histogram of Oriented Gradients imple-
mentation of OpenCV with our own implementation
of Integral Channel Features and of Deformable Part
Models. Based on the criteria of evaluation speed,
peak memory-use and accuracy, we obtained supe-
rior results to publicly available (CPU) implemen-
tations. The accuracy obtained by combining De-
formable Part Models with Integral Channel Features
is impressive compared to state-of-the-art detectors
which are far more computation intensive.
Code for this framework is available at http://
eavise.be/AbnormalBehaviour, and can be used for
research purposes.
REFERENCES
Benenson, R., Mathias, M., Timofte, R., and Van Gool, L.
(2012). Pedestrian detection at 100 frames per second.
In CVPR. IEEE.
Benenson, R., Mathias, M., Tuytelaars, T., and Van Gool, L.
(2013). Seeking the strongest rigid detector. In CVPR.
IEEE.
Benenson, R., Omran, M., Hosang, J., and Schiele, B.
(2014). Ten years of pedestrian detection, what have
we learned?
Bourdev, L. and Brandt, J. (2005). Robust object detection
via soft cascade. In CVPR, volume 2. IEEE.
Dalal, N. and Triggs, B. (2005). Histograms of oriented
gradients for human detection. In CVPR, volume 1.
IEEE.
De Smedt, F., Struyf, L., Beckers, S., Vennekens, J.,
De Samblanx, G., and Goedem´e, T. (2012). Is the
game worth the candle? evaluation of opencl for ob-
ject detection algorithm optimization. PECCS.
De Smedt, F., Van Beeck, K., Tuytelaars, T., and Goedem´e,
T. (2013). Pedestrian detection at warp speed: Ex-
ceeding 500 detections per second. In CVPRW. IEEE.
De Smedt, F., Van Beeck, K., Tuytelaars, T., and Goedem´e,
T. (2014). The combinator: optimal combination of
multiple pedestrian detectors. In ICPR.
Doll´ar, P. (2013). Piotrs image and video matlab toolbox
(pmt). Software available at: http://vision. ucsd. edu/˜
pdollar/toolbox/doc/index. html.
Doll´ar, P., Appel, R., Belongie, S., and Perona, P. (2014).
Fast feature pyramids for object detection. PAMI,
36(8).
Doll´ar, P., Appel, R., and Kienzle, W. (2012a). Crosstalk
cascades for frame-rate pedestrian detection. In
ECCV.
Doll´ar, P., Belongie, S., and Perona, P. (2010). The fastest
pedestrian detector in the west. In BMVC.
Doll´ar, P., Tu, Z., Perona, P., and Belongie, S. (2009). Inte-
gral channel features. In BMVC, volume 2.
Doll´ar, P., Wojek, C., Schiele, B., and Perona, P. (2012b).
Pedestrian detection: An evaluation of the state of the
art. PAMI, 34.
Dubout, C. and Fleuret, F. (2012). Exact acceleration of
linear object detectors. In ECCV. Springer.
Felzenszwalb, P., McAllester, D., and Ramanan, D. (2008).
A discriminatively trained, multiscale, deformable
part model. In CVPR. IEEE.
Felzenszwalb, P. F., Girshick, R. B., and McAllester, D.
(2010a). Cascade object detection with deformable
part models. In CVPR. IEEE.
Felzenszwalb, P. F., Girshick, R. B., and
McAllester, D. (2010b). Discriminatively
trained deformable part models, release 4.
http://people.cs.uchicago.edu/ pff/latent-release4/.
Mathias, M., Benenson, R., Timofte, R., and Gool, L. V.
(2013). Handling occlusions with franken-classifiers.
In ICCV. IEEE.
Park, D., Ramanan, D., and Fowlkes, C. (2010). Multireso-
lution models for object detection. In ECCV. Springer.
VISAPP2015-InternationalConferenceonComputerVisionTheoryandApplications
558