84
86
88
90
92
94
96
98
100
84
86
88
90
92
94
96
98
100
84
86
88
90
92
94
96
98
100
3D approach 2D+3D bimodal approach 2D approach
Figure 4: Comparison between 2D face recognition (LBP) with greyscale images, 3D face recognition (DLBP) with range
images, and bi-modal recognition with a late-fusion, for 3 collections.
REFERENCES
Abate, A. F., Nappi, M., Riccio, D., and Sabatino, G.
(2007). 2D and 3D face recognition: A survey. Pat-
tern Recognition Letters, 28(14):1885 – 1906.
Aissaoui, A., Martinet, J., and Djeraba, C. (2014). Dlbp:
A novel descriptor for depth image based face recog-
nition. In Proceedings of the 21th IEEE international
conference on Image processing, pages 298–302.
Bowyer, K. W., Chang, K., and Flynn, P. (2006). A survey
of approaches and challenges in 3D and multi-modal
3D + 2D face recognition. Computer Vision and Image
Understanding, 101(1):1–15.
Byun, H. and Lee, S.-W. (2002). Applications of sup-
port vector machines for pattern recognition: A sur-
vey. In Proceedings of the First International Work-
shop on Pattern Recognition with Support Vector Ma-
chines, SVM ’02, pages 213–236, London, UK, UK.
Springer-Verlag.
Chang, K., Bowyer, K., and Flynn, P. (2003). Face recog-
nition using 2D and 3D facial data. In ACM Work-
shop on Multimodal User Authentication, pages 25–
32. Citeseer.
Fan, K.-C. and Hung, T.-Y. (2014). A novel local pattern
descriptor – local vector pattern in high-order deriva-
tive space for face recognition. IEEE Transactions on
Image Processing, 23(7):2877–2891.
Gupta, S., Castleman, K., Markey, M., and Bovik, A.
(2010). Texas 3D face recognition database. In Image
Analysis and Interpretation. IEEE Southwest Sympo-
sium on, pages 97–100. IEEE.
Huang, D., Ardabilian, M., Wang, Y., and Chen, L. (2009).
Asymmetric 3D/2D face recognition based on lbp fa-
cial representation and canonical correlation analysis.
In Proceedings of the 16th IEEE international con-
ference on Image processing, ICIP’09, pages 3289–
3292, Piscataway, NJ, USA. IEEE Press.
Huang, D., Shan, C., Ardabilian, M., Wang, Y., and Chen,
L. (2011). Local binary patterns and its application
to facial image analysis: A survey. IEEE Transactions
on Systems, Man, and Cybernetics, Part C, 41(6):765–
781.
Huang, Y., Wang, Y., and Tan, T. (2006). Combining statis-
tics of geometrical and correlative features for 3D face
recognition. In Proceedings of the British Machine Vi-
sion Conference, pages 879–888.
Hung, T.-Y. and Fan, K.-C. (2014). Local vector pattern in
high-order derivative space for face recognition. In
Proceedings of the 21th IEEE international confer-
ence on Image processing, pages 239–3243.
Husken, M., Brauckmann, M., Gehlen, S., and Von der
Malsburg, C. (2005). Strategies and benefits of fusion
of 2D and 3D face recognition. In Computer Vision
and Pattern Recognition-Workshops. IEEE Computer
Society Conference on, pages 174–174. IEEE.
Jahanbin, S., Choi, H., and Bovik, A. (2011). Passive mul-
timodal 2-d+3-d face recognition using gabor features
and landmark distances. Information Forensics and
Security, IEEE Transactions on, 6(4):1287–1304.
Mantecn, T., del Blanco, C., Jaureguizar, F., and Garca, N.
(2014). Dlbp: A novel descriptor for depth image
based face recognition. In Proceedings of the 21th
IEEE international conference on Image processing,
pages 293–297.
Ojala, T., Pietik¨ainen, M., and M¨aenp¨a¨a, T. (2002). Mul-
tiresolution gray-scale and rotation invariant texture
classification with local binary patterns. IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence., 24(7):971–987.
Ojala, T., Valkealahti, K., Oja, E., and Pietikinen, M.
(2001). Texture discrimination with multidimensional
distributions of signed gray-level differences. Pattern
Recognition, 34(3):727 – 739.
Phillips, P. J., Flynn, P. J., Scruggs, T., Bowyer, K. W.,
Chang, J., Hoffman, K., Marques, J., Min, J., and
Worek, W. (2005). Overview of the face recogni-
tion grand challenge. In Computer vision and pat-
tern recognition. IEEE computer society conference
on, volume 1, pages 947–954. IEEE.
Phillips, P. J., Moon, H., Rizvi, S. A., and Rauss, P. J.
(2000). The feret evaluation methodology for face-
Bi-modalFaceRecognition-Howcombining2Dand3DCluesCanIncreasethePrecision
563