of the literature review, we will conduct further stud-
ies regarding users’ cognitive states while engaged in
information seeking tasks, that might be related with
affective, psychological and motivational relevance
such as arousal, frustration, confusion, etc.
REFERENCES
Ajanki, A., Hardoon, D. R., Kaski, S., Puolam
¨
aki, K., and
Shawe-Taylor, J. (2009). Can eyes reveal interest? im-
plicit queries from gaze patterns. User Modeling and
User-Adapted Interaction, 19(4):307–339.
Allanson, J. and Wilson, G. M. (2002). Physiological com-
puting. In CHI’02 Extended Abstracts on Human Fac-
tors in Computing Systems, pages 912–913. ACM.
Barral, O., Eugster, M. J., Ruotsalo, T., Spap
´
e, M. M.,
Kosunen, I., Ravaja, N., Kaski, S., and Jacucci, G.
(2015). Exploring peripheral physiology as a predic-
tor of perceived relevance in information retrieval. In
Proceedings of the 20th International Conference on
Intelligent User Interfaces (in Press), IUI ’15, New
York, NY, USA. ACM.
Barral, O. and Jacucci, G. (2014). Applying physiologi-
cal computing methods to study psychological, affec-
tive and motivational relevance. In Symbiotic Interac-
tion, Third International Workshop, Symbiotic 2014.
Springer.
Barral, O., Kosunen, I., and Jacucci, G. Influence of read-
ing speed on pupil size as a measure of perceived
relevance. In Proceedings of the Joint Workshop on
Personalized Information Access (PIA 2014), in con-
junction with the 22nd conference on User Modeling,
Adaptation and Personalization (UMAP 2014).
Barry, C. L. (1994). User-defined relevance criteria: an ex-
ploratory study. JASIS, 45(3):149–159.
Borlund, P. (2003). The concept of relevance in ir. Journal
of the American Society for information Science and
Technology, 54(10):913–925.
Borlund, P. and Ingwersen, P. (1998). Measures of relative
relevance and ranked half-life: performance indicators
for interactive ir. In Proceedings of the 21st annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 324–331.
ACM.
Cacioppo, J. T., Tassinary, L. G., Berntson, G. G., et al.
(2007). Handbook of psychophysiology, volume 2.
Cambridge University Press New York.
Cosijn, E. and Ingwersen, P. (2000). Dimensions of
relevance. Information Processing & Management,
36(4):533–550.
Eugster, M. J., Ruotsalo, T., Spap
´
e, M. M., Kosunen, I.,
Barral, O., Ravaja, N., Jacucci, G., and Kaski, S.
(2014). Predicting term-relevance from brain signals.
In Proceedings of the 37th International ACM SIGIR
Conference on Research & Development in Informa-
tion Retrieval, SIGIR ’14, pages 425–434, New York,
NY, USA. ACM.
Fairclough, S. H. (2009). Fundamentals of physiological
computing. Interacting with computers, 21(1):133–
145.
Fairclough, S. H. and Gilleade, K. (2014). Advances in
Physiological Computing. Springer.
Gevins, A. and Smith, M. E. (2003). Neurophysiologi-
cal measures of cognitive workload during human-
computer interaction. Theoretical Issues in Er-
gonomics Science, 4(1-2):113–131.
Harter, S. P. (1992). Psychological relevance and informa-
tion science. Journal of the American Society for in-
formation Science, 43(9):602–615.
Ingwersen, P. (1996). Cognitive perspectives of information
retrieval interaction: elements of a cognitive ir theory.
Journal of documentation, 52(1):3–50.
Kapoor, A., Burleson, W., and Picard, R. W. (2007). Auto-
matic prediction of frustration. International Journal
of Human-Computer Studies, 65(8):724–736.
Loboda, T. D., Brusilovsky, P., and Brunstein, J. (2011). In-
ferring word relevance from eye-movements of read-
ers. In Proceedings of the 16th international confer-
ence on Intelligent user interfaces, pages 175–184.
ACM.
Lorist, M. M., Bezdan, E., ten Caat, M., Span, M. M.,
Roerdink, J. B., and Maurits, N. M. (2009). The influ-
ence of mental fatigue and motivation on neural net-
work dynamics; an eeg coherence study. Brain re-
search, 1270:95–106.
Mizzaro, S. (1997). Relevance: The whole history. Jour-
nal of the American society for information science,
48(9):810–832.
Mizzaro, S. (1998). How many relevances in information
retrieval? Interacting with computers, 10(3):303–320.
Oliveira, F. T., Aula, A., and Russell, D. M. (2009). Dis-
criminating the relevance of web search results with
measures of pupil size. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
pages 2209–2212. ACM.
Puolam
¨
aki, K., Saloj
¨
arvi, J., Savia, E., Simola, J., and
Kaski, S. (2005). Combining eye movements and col-
laborative filtering for proactive information retrieval.
In Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in in-
formation retrieval, pages 146–153. ACM.
Saracevic, T. (1975). Relevance: A review of and a frame-
work for the thinking on the notion in information sci-
ence. Journal of the American Society for Information
Science, 26(6):321–343.
Saracevic, T. (1996). Relevance reconsidered. In Proceed-
ings of the second conference on conceptions of li-
brary and information science (CoLIS 2), pages 201–
218. ACM Press.
Saracevic, T. (1997). The stratified model of information
retrieval interaction: Extension and applications. In
Proceedings of the annual meeting-American Society
For Information Science, volume 34, pages 313–327.
Learned Information (Europe) LTD.
Saracevic, T. (2007a). Relevance: A review of the literature
and a framework for thinking on the notion in infor-
mation science. part ii: Nature and manifestations of
relevance. Journal of the American Society for Infor-
mation Science and Technology, 58(13):1915–1933.
BringingPsychological,AffectiveandMotivationalRelevanceFrameworkstoRealInformationRetrievalSystems
7