Pato Branco), Araucaria Foundation of Parana State
(Fundac¸˜ao Arauc´aria) and National Council for Sci-
entific and Technological Development (CNPq).
REFERENCES
Aamodt, A. and Plaza, E. (1994). Case-based reasoning:
Foundational issues, methodological variations, and
system approaches. Artificial Intelligence Communi-
cations, 7(1):39–59.
Abdel-Aziz, A., Strickert, M., and H¨ullermeier, E. (2014).
Learning solution similarity in preference-based cbr.
In Case-Based Reasoning Research and Develop-
ment: 22nd International Conference, ICCBR 2014,
ICCBR ’14, pages 17–31.
Aha, D. W., Kibler, D., and Albert, M. K. A. (1991).
Instance-based learning algorithms. Machine Learn-
ing, 6(1):37–66.
Amores, J. (2013). Multiple instance classification: Re-
view, taxonomy and comparative study. Artificial In-
telligence, 201:81–105.
Andrieu, C., de Freitas, N., Doucet, A., and Jordan, M. I.
(2003). An introduction to mcmc for machine learn-
ing. Machine learning, 50(1):5–43.
Arowolo, H., Weaver, W. D. Jr. and Amosa, B., and Faleye,
E. (2012). An expert system for management of poul-
try diseases. International Proceedings of Computer
Science & Information Tech., 47:113–117.
Au, T.-C., Zhang, S., and Stone, P. (2014). Semi-
autonomous intersection management. In Proceed-
ings of the 2014 International Conference on Au-
tonomous Agents and Multi-agent Systems, AAMAS
’14, pages 1451–1452.
Bachrach, Y., Savani, R., and Shah, N. (2014). Cooper-
ative max games and agent failures. In Proceedings
of the 2014 International Conference on Autonomous
Agents and Multi-agent Systems, AAMAS ’14, pages
29–36.
Bakst, M. R., Akuffo, V., Nicholson, D., and French, N.
(2012). Comparison of blastoderm traits from 2 lines
of broilers before and after egg storage and incubation.
Poultry Science, 91(10):2645–2648.
Castelfranchi, C. (1997). To be or not to be an agent. In
Proceedings of the Workshop on Intelligent Agents III,
Agent Theories, Architectures, and Languages, ECAI
’96, pages 37–39.
Charles, T. B. and Stuart, H. O. (2011). Commercial poultry
farming. Biotech Books, 6 th edition.
Closter, A. M., Van As, P., Elferink, M. G., Crooijmanns,
R. P. M. A., Groenen, M. A. M., Vereijken, A.
L. J., Van Arendonk, J. A. M., and Bovenhuis, H.
(2012). Genetic correlation between heart ratio and
body weight as a function of ascites frequency in
broilers split up into sex and health status. Southern
journal of agricultural economics, 91(3):556–564.
Cobo, L. C., Isbell, C. L., and Thomaz, A. L. (2013). Object
focused q-learning for autonomous agents. In Pro-
ceedings of the 2013 International Conference on Au-
tonomous Agents and Multi-agent Systems, AAMAS
’13, pages 1061–1068.
Enembreck, F. and Barth`es, J.-P. (2005). Ela – a new ap-
proach for learning agents. Autonomous Agents and
Multi-Agent Systems, 10(3):215–248.
Ferket, P. R. and Gernat, A. G. (2006). Factors that affect
feed intake of meat birds: A review. International
Journal of Poultry, 10(5):905–911.
Fontana, E. A., Weaver, W. D. J., Watkins, B. A., and Den-
bow, D. M. (1992). Effect of early feed restriction
on growth, feed conversion, and mortality in broiler
chickens. Poultry Science, 71(8):1296–1305.
Jaidee, U., Mu˜noz-Avila, H., and Aha, D. W. (2013). Case-
based goal-driven coordination of multiple learning
agents. In International Conference on Case-Based
Reasoning, ICCBR ’13, pages 164–178.
Jiang, S., Zhang, J., and Ong, Y.-S. (2014). A pheromone-
based traffic management model for vehicle re-routing
and traffic light control. In Proceedings of the 2014
International Conference on Autonomous Agents and
Multi-agent Systems, AAMAS ’14, pages 1479–1480.
Leake, D. and McSherry, D. (2005). Introduction to the
special issue on explanation in case-based reasoning.
Artificial Intelligence Review, 24(2):103–108.
Lee, D., Lyu, S., Wang, R., Weng, C., and Chen, B.
(2011). Exhibit differential functions of various an-
tibiotic growth promoters in broiler growth, immune
response and gastrointestinal physiology. Interna-
tional Journal of Poultry Science, 10(3):216–220.
Maes, P. (1995). Artificial life meets entertainment: Life-
like autonomous agents. Communications of the ACM,
38(11):108–114.
Maseleno, A. and Hasan, M. M. (2012). Poultry dis-
eases expert system using dempster-shafer theory and
web mapping. International Journal of Advanced Re-
search in Artificial Intelligence, 1(3):44–48.
McSherry, D. (2014). An algorithm for conversational case-
based reasoning in classification tasks. In Case-Based
Reasoning Research and Development: 22nd Interna-
tional Conference, ICCBR 2014, ICCBR ’14, pages
289–304.
Northcutt, J. K. and Jones, D. R. (2004). A survey of wa-
ter use and common industry practices in commercial
broiler processing facilities. Jounal Applied Poultry
Research, 13(1):48–54.
Ribeiro, R. and Enembreck, F. (2013). A sociologically in-
spired heuristic for optimization algorithms: A case
study on ant systems. Expert Systems With Applica-
tions, 40(5):1814–1826.
Ribeiro, R., Favarim, F., Barbosa, M. A. C., Borges, A. P.,
Dordal, O. B., Koerich, A. L., and Enembreck, F.
(2012). Unified algorithm to improve reinforcement
learning in dynamic environments - an instance-based
approach. In International Conference on Enterprise
Information Systems, ICEIS ’12, pages 229–238.
Ribeiro, R., Ronszcka, A. F., Barbosa, M. A. C., Favarim,
F., and Enembreck, F. (2013). Updating strategies
of policies for coordinating agent swarm in dynamic
environments. In International Conference on Enter-
prise Information Systems, ICEIS ’13, pages 345–356.
ICEIS2015-17thInternationalConferenceonEnterpriseInformationSystems
502