Decision Tree Transformation for Knowledge Warehousing

Rim Ayadi, Yasser Hachaichi, Saleh Alshomrani, Jamel Feki

2015

Abstract

Explicit knowledge extracted from data, formalized tacit knowledge from experts or even knowledge existing in business sources may be in several heterogeneous formal representations and structures: as rules, models, functions, etc. However, a knowledge warehouse should solve this structural heterogeneity before storing knowledge. This requires specific tasks of harmonizing. This paper first presents our proposed definition and architecture of a knowledge warehouse, and then presents some languages for knowledge representations as particular the MOT (Modeling with Object Types) language. In addition, we suggest a metamodel for the MOT, and a metamodel for the explicit knowledge obtained using decision trees technique. As we aim to represent knowledge having different modeling formalisms into MOT, as a unified model, then we suggest a set of transformation rules that assure the move from the decision tree source model into the MOT target model. This work is still in progress, it is currently completed with tranformations for additional.

References

  1. Althuwaynee, O., Pradhan, B., Park, H.-J., and Lee, J. (2014). A novel ensemble decision tree-based chisquared automatic interaction detection (chaid) and multivariate logistic regression models in landslide susceptibility mapping. Landslides, 11(6):1063-1078.
  2. Ayadi, R., Hachaichi, Y., and Feki, J. (2013). Vers des entrep oˆts de connaissances : Définition et architecture. In Conférence sur les Avancées des Systèmes Décisionnels ASD'2013.
  3. Fensel, D., Landes, D., Neubert, S., and Studer, R. (1994). Integrating semiformal and formal methods in knowledge-based systems development. In Proceedings of the 3rd Japanese Knowledge Acquisition Workshop JKAW'94 (Hatoyama, Japan, Nov. 7-9), pages 73-87.
  4. Héon, M. (2011). Guide du langage de modélisation par objets typés mot. Cotechnoe inc, Québec, Canada.
  5. Héon, M. (2012). Ontocase, une approche d'élicitation semi-formelle graphique et son outil logiciel pour la construction d'une ontologie de domaine. In 5ième Gestion des connaissances dans les sociétés et les organisations, Montréal (Québec), Canada.
  6. Héon, M., Basque, J., and Paquette, G. (2010). Validation de la sémantique d'un modèle semi-formel de connaissances avec ontocase. In Acte des 21èmes Journées Francophones d'Ingénierie des Connaissances, page 55 à 66, Nˆimes, France.
  7. Irfan, R. and uddin Shaikh, M. (2010). Enhance knowledge management process for group decision making. In Proceedings of the 2010 Second International Conference on Computer Engineering and Applications - Volume 01, ICCEA 7810, pages 66-70. IEEE Computer Society.
  8. Kerschberg, L. (2001). Knowledge management in heterogeneous data warehouse environments. In International Conference on Data Warehousing and Knowledge Discovery, pages 1-10. Springer.
  9. Nemati, H. R., Steiger, D. M., Iyer, L. S., and Herschel, R. T. (2002). Knowledge warehouse: an architectural integration of knowledge management, decision support, artificial intelligence and data warehousing. Decision Support Systems, 33(2):143 - 161.
  10. Nonaka, I. and Takeuchi, H. (1995). The KnowledgeCreating Company: How Japanese Companies Create the Dynamics of Innovation. Oxford University Press, New York.
  11. Paquette, G. (2002). Modélisation des Connaissances et des Compétences: Un Langage Graphique Pour Concevoir et Apprendre. Presses de l'Université du Québec, Sainte-Foy.
  12. Paquette, G. (2010). Visual Knowledge Modeling for Semantic Web Technologies: Models and Ontologies. IGI Global, Hershey, PA.
  13. Qing-lan, H. and Zhi-jun, H. (2009). Research on cost control dss based on knowledge warehouse. In Proceedings of the 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery - Volume 07, pages 357-361. IEEE Computer Society.
  14. Quinlan, J. R. (1993). C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
  15. Van Sinderen, M., Johnson, P., Xu, X., and Doumeingts, G. (2012). Enterprise Interoperability: 4th International IFIP Working Conference, IWEI 2012, Harbin, China, September 6-7, 2012. Proceedings. Springer.
  16. Zaki, M. J. and Meira, W. (2014). Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press.
Download


Paper Citation


in Harvard Style

Ayadi R., Hachaichi Y., Alshomrani S. and Feki J. (2015). Decision Tree Transformation for Knowledge Warehousing . In Proceedings of the 17th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-096-3, pages 616-623. DOI: 10.5220/0005380506160623


in Bibtex Style

@conference{iceis15,
author={Rim Ayadi and Yasser Hachaichi and Saleh Alshomrani and Jamel Feki},
title={Decision Tree Transformation for Knowledge Warehousing},
booktitle={Proceedings of the 17th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2015},
pages={616-623},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005380506160623},
isbn={978-989-758-096-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 17th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - Decision Tree Transformation for Knowledge Warehousing
SN - 978-989-758-096-3
AU - Ayadi R.
AU - Hachaichi Y.
AU - Alshomrani S.
AU - Feki J.
PY - 2015
SP - 616
EP - 623
DO - 10.5220/0005380506160623