Integrating Explicit Knowledge in the Visual Analytics Process - Knowledge-assisted Visual Analytics Methods for Time-oriented Data
Markus Wagner
2015
Abstract
In this paper, I describe my thesis project for the integration of explicit knowledge from domain experts into the visual analytics process. As base for the implementation of the research project, I will follow the nested model for visualization design and validation. Additionally, I use a problem-driven approach to study knowledge-assisted visualization systems for time-oriented data in the context of real world problems. At first, my research will focus on the ITsecurity domain where I analyze the needs of malware analysts to support them during their work. Therefore I have currently prepared a problem characterization and abstraction to understand the needs of the domain experts to gain more insight into their workflow. Based on that findings, I am currently working on the design and the implementation of a prototype. Next, I will evaluate these visual analytics methods and finally I will test the generalizability of the knowledgeassisted visual analytics methods in a second domain.
References
- Aigner, W., Miksch, S., Schumann, H., and Tominski, C. (2011). Visualization of Time-Oriented Data. Springer, London.
- Andrienko, N. and Andrienko, G. (2005). Exploratory Analysis of Spatial and Temporal Data: A Systematic Approach. Springer, Berlin, New York.
- Becker, R. A. and Cleveland, W. S. (1987). Brushing scatterplots. Technometrics, 29(2):127-142.
- Bertin, J. (1983). Semiology of Graphics. University of Wisconsin Press.
- Cammarano, M., Dong, X., Chan, B., Klingner, J., Talbot, J., Halevy, A., and Hanrahan, P. (2007). Visualization of heterogeneous data. TVCG, 13(6):1200-1207.
- Card, S. and Card, M. (1999). Readings in Information Visualisation. Using Vision to Think.: Using Vision to Think. Morgan Kaufman Publ Inc, San Francisco, Calif.
- Chen, C. (2005). Top 10 unsolved information visualization problems. CG&A, 25(4):12-16.
- Chen, M., Ebert, D., Hagen, H., Laramee, R., Van Liere, R., Ma, K.-L., Ribarsky, W., Scheuermann, G., and Silver, D. (2009). Data, information, and knowledge in visualization. CG&A, 29(1):12-19.
- Chen, M. and Hagen, H. (2010). Guest editors' introduction: Knowledge-assisted visualization. CG&A, 30(1):15-16.
- Chi, E. H.-H. and Riedl, J. (1998). An operator interaction framework for visualization systems. In IEEE Symposium on Information Visualization, 1998. Proceedings, pages 63-70.
- Combi, C., Keravnou-Papailiou, E., and Shahar, Y. (2010). Temporal Information Systems in Medicine. Springer, New York.
- Cooper, A., Reimann, R., and Cronin, D. (2007). About Face 3: The Essentials of Interaction Design. Wiley, Indianapolis, IN, 3rd edition.
- Dornhackl, H., Kadletz, K., Luh, R., and Tavolato, P. (2014). Malicious behavior patterns. In IEEE 8th International Symposium on Service Oriented System Engineering, pages 384-389.
- Falconer, S., Bull, R., Grammel, L., and Storey, M. (2009). Creating visualizations through ontology mapping. In CISIS, pages 688-693.
- Fischer, F., Mansmann, F., and Keim, D. A. (2012). Realtime visual analytics for event data streams. In Proceedings of the 27th Annual ACM Symposium on Applied Computing, SAC 7812, pages 801-806. ACM.
- Gilson, O., Silva, N., Grant, P., and Chen, M. (2008). From web data to visualization via ontology mapping. Computer Graphics Forum, 27(3):959-966.
- Jouault, F. and Kurtev, I. (2006). Transforming models with ATL. In Bruel, J.-M., editor, Satellite Events at the MoDELS 2005 Conference, number 3844 in Lecture Notes in Computer Science, pages 128-138. Springer Berlin Heidelberg.
- Kadlec, B., Tufo, H., and Dorn, G. (2010). Knowledgeassisted visualization and segmentation of geologic features. CG&A, 30(1):30-39.
- Keim, D., Kohlhammer, J., Ellis, G., and Mansmann, F., editors (2010). Mastering the information age: solving problems with visual analytics. Eurographics Association, Goslar.
- Kielman, J., Thomas, J., and May, R. (2009). Foundations and frontiers in visual analytics. Information Visualization, 8(4):239-246.
- Kulyk, O., Kosara, R., Urquiza, J., and Wassink, I. (2007). Human-centered aspects. In Kerren, A., Ebert, A., and Meyer, J., editors, Human-Centered Visualization Environments, number 4417 in Lecture Notes in Computer Science, pages 13-75. Springer, Berlin.
- Lammarsch, T., Aigner, W., Bertone, A., Gartner, J., Mayr, E., Miksch, S., and Smuc, M. (2009). Hierarchical temporal patterns and interactive aggregated views for pixel-based visualizations. In Information Visualisation, 2009 13th International Conference, pages 44- 50.
- Lazar, J., Feng, J. H., and Hochheiser, H. (2010). Research Methods in Human-Computer Interaction. Wiley, Chichester, West Sussex, U.K, 1 edition.
- Mackinlay, J. (1986). Automating the design of graphical presentations of relational information. ACM Trans. Graph., 5(2):110-141.
- Mackinlay, J., Hanrahan, P., and Stolte, C. (2007). Show me: Automatic presentation for visual analysis. TVCG, 13(6):1137-1144.
- Miksch, S. and Aigner, W. (2014). A matter of time: Applying a data-users-tasks design triangle to visual analytics of time-oriented data. Computers & Graphics, Special Section on Visual Analytics, 38:286-290.
- Mistelbauer, G., Bouzari, H., Schernthaner, R., Baclija, I., Kochl, A., Bruckner, S., Sramek, M., and Groller, M. (2012). Smart super views: A knowledge-assisted interface for medical visualization. In VAST, pages 163- 172.
- Munzner, T. (2009). A nested model for visualization design and validation. TVCG, 15(6):921-928.
- Nam, J. E., Maurer, M., and Mueller, K. (2009). A high-dimensional feature clustering approach to support knowledge-assisted visualization. Computers & Graphics, 33(5):607-615.
- Perlin, K. and Fox, D. (1993). Pad: An alternative approach to the computer interface. In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 7893, pages 57-64, New York. ACM.
- Pike, W. A., Stasko, J., Chang, R., and O'Connell, T. A. (2009). The science of interaction. Information Visualization, 8(4):263-274.
- Rind, A., Aigner, W., Miksch, S., Wiltner, S., Pohl, M., Turic, T., and Drexler, F. (2011). Visual exploration of time-oriented patient data for chronic diseases: Design study and evaluation. In Holzinger, A. and Simonic, K.-M., editors, Information Quality in e-Health, number 7058 in LNCS, pages 301-320. Springer, Berlin.
- Saxe, J., Mentis, D., and Greamo, C. (2012). Visualization of shared system call sequence relationships in large malware corpora. In International Workshop on Visualization for Cyber Security, VizSec 7812, pages 33-40. ACM.
- Sedlmair, M., Meyer, M., and Munzner, T. (2012). Design study methodology: Reflections from the trenches and the stacks. TVCG, 18(12):2431-2440.
- Sharp, H., Rogers, Y., and Preece, J. (2007). Interaction Design: Beyond Human-Computer Interaction. John Wiley & Sons, Chichester ; Hoboken, NJ, 2. edition.
- Shneiderman, B. (1996). The eyes have it: a task by data type taxonomy for information visualizations. In IEEE Symposium on Visual Languages. Proceedings, pages 336-343.
- Spence, R. (2006). Information Visualization: Design for Interaction. Prentice Hall, New York, 2nd rev. edition.
- Thomas, J. J. and Cook, K. A. (2005). Illuminating the Path: The Research and Development Agenda for Visual Analytics. National Visualization and Analytics Ctr. Published: Paperback.
- Tominski, C. (2011). Event-based concepts for user-driven visualization. Information Visualization, 10(1):65-81.
- Wagner, M., Aigner, W., Rind, A., Dornhackl, H., Kadletz, K., Luh, R., and Tavolato, P. (2014). Problem characterization and abstraction for visual analytics in behavior-based malware pattern analysis. In International Workshop on Visualization for Cyber Security. ACM.
- Wang, T. D., Plaisant, C., Quinn, A. J., Stanchak, R., Murphy, S., and Shneiderman, B. (2008). Aligning temporal data by sentinel events: Discovering patterns in electronic health records. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 7808, pages 457-466, New York. ACM.
- Wang, X., Jeong, D. H., Dou, W., Lee, S.-W., Ribarsky, W., and Chang, R. (2009). Defining and applying knowledge conversion processes to a visual analytics system. Computers & Graphics, 33(5):616-623.
- Wegner, P. (1997). Why interaction is more powerful than algorithms. Commun. ACM, 40(5):80-91.
- Wills, G. and Wilkinson, L. (2010). AutoVis: Automatic visualization. Information Visualization, 9(1):47-69.
Paper Citation
in Harvard Style
Wagner M. (2015). Integrating Explicit Knowledge in the Visual Analytics Process - Knowledge-assisted Visual Analytics Methods for Time-oriented Data . In Doctoral Consortium - DCVISIGRAPP, (VISIGRAPP 2015) ISBN , pages 9-18
in Bibtex Style
@conference{dcvisigrapp15,
author={Markus Wagner},
title={Integrating Explicit Knowledge in the Visual Analytics Process - Knowledge-assisted Visual Analytics Methods for Time-oriented Data},
booktitle={Doctoral Consortium - DCVISIGRAPP, (VISIGRAPP 2015)},
year={2015},
pages={9-18},
publisher={SciTePress},
organization={INSTICC},
doi={},
isbn={},
}
in EndNote Style
TY - CONF
JO - Doctoral Consortium - DCVISIGRAPP, (VISIGRAPP 2015)
TI - Integrating Explicit Knowledge in the Visual Analytics Process - Knowledge-assisted Visual Analytics Methods for Time-oriented Data
SN -
AU - Wagner M.
PY - 2015
SP - 9
EP - 18
DO -