REFERENCES
(2014). Intel Berkeley Research Lab.
Abdelaal, M., Kuka, C., Theel, O., and Nicklas, D. (2015).
Reliable Virtual Sensing for Wireless Sensor Net-
works. In 2015 IEEE Ninth International Conference
on Intelligent Sensors, Sensor Networks and Informa-
tion Processing (ISSNIP). (under review).
Abdelaal, M. and Theel, O. (2013a). An efficient and adap-
tive data compression technique for energy conserva-
tion in wireless sensor networks. The IEEE Confer-
ence on Wireless Sensors (ICWiSe 2013), pages 124–
129.
Abdelaal, M. and Theel, O. (2013b). Power management in
wireless sensor networks: Challenges and solutions.
In 2013 International Conference in Centeral Asia on
Internet ((ICI 2013)).
Abdelaal, M. and Theel, O. E. (2014). Recent Energy-
preservation Endeavours for Long-life Wireless Sen-
sor Networks: A Concise Survey. In Eleventh Inter-
national Conference on Wireless and Optical Commu-
nications Networks, WOCN 2014, Vijayawada, Gun-
tur District, Andhra Pradesh, India, September 11-13,
2014, pages 1–7. An extension of the article: Power
Management in Wireless Sensor Networks: Chal-
lenges and Solutions.
Abdelaal, M., Yang, G., Fr¨anzle, M., and Theel, O. (2014).
Eavs: Energy aware virtual sensing for wireless sen-
sor networks. In 2014 IEEE Ninth International Con-
ference on Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP).
Adinya, O. J. and Daoliang, L. (2012). Low power
transceiver design parameters for wireless sensor net-
works. Wireless Sensor Network, 4(10):243–249.
Akyildiz, I., Pompili, D., and Melodia, T. (2005). Underwa-
ter Acoustic Sensor Networks: Research Challenges.
Ad Hoc Networks Journal, 3(3):257–279.
Akyildiz, I. F., W. Su, Y. S., and Cayirci, E. (2002). Wire-
less sensor networks: a survey. Computer Networks,
38(4):393–422.
Anaya, I., Simko, B., Bourcier, J., Plouzeau, N., and
J´ez´equel, J. (2014). A prediction-driven adaptation
approach for self-adaptive sensor networks. In Pro-
ceedings of the 9th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing
Systems, SEAMS 2014, pages 145–154, New York,
NY, USA. ACM.
Bashlovkina, V., Abdelaal, M., and Theel, O. (2015).
Fuzzycat: a lightweight fuzzy compression adaptive
transform for wireless sensor networks. In The 14th
International Conference on Information Processing
in Sensor Networks (IPSN ’15). (under review).
Chelius, G., Fraboulet, A., and Hamida, E. Wsnet: an
Event-driven Simulator for Large Scale Wireless Net-
works. [accessed May 2014].
Dargie, W. and Poellabauer, C. (2010). Fundamental of
Wireless Sensor Networks Theory and Practice. John
Wiley & Sons Ltd.
Kim, H. J. (2009). A New Lossless Data Compression
Method. In IEEE International Conference on Mul-
timedia and Expo (ICME), pages 1740–1743.
Kozma, R., Wang, L., Iftekharuddin, K., and et al. (2012).
A Radar-enabled Collaborative Sensor Network Inte-
grating COTS Technology for Surveillance and Track-
ing Sensors. Sensors, 12(2):1336–1351.
Li-zhong, W., Hong-bo, L., Gang, Z., and Tao, H. (2011).
The Network Nodes Design of Gas Wireless Sensor
Monitor. The 2nd International Conference on Me-
chanic Automation and Control Engineering (MACE).
Muller, M. (2007). Information Retrieval for Music and
Motion, chapter Dynamic Time Warping. Springer.
Oliveira, L. and Rodrigues, J. (2011). Wireless Sensor Net-
works: a Survey on Environmental Monitoring. Jour-
nal of Communications, 6(2).
Perfilieva, I. (2004). Fuzzy transforms. Transactions on
Rough Sets II, pages 63–81.
Raza, U., Camerra, A., Murphy, A., and et al. (2012). What
Does Model-driven Data Acquisition Really Achieve
in Wireless Sensor Networks? In Proc. of The 2012
IEEE International Conference on Pervasive Comput-
ing and Communications (PerCom), pages 85–94.
Somov, A., Baranov, A., Savkin, A., Spirjakin, D., Spir-
jakin, A., and Passerone, R. (2011). Development
of Wireless Sensor Network for Combustible Gas
Monitoring. A: Physical Sensors and Actuators,
171(2):398–405.
Wehn, N. and Mnch, M. (1999). Minimizing power con-
sumption in digital circuits and systems: An overview.
Technical report, Kaiserslautern University.
Zhang, X. and Shin, K. G. (2012). E-mili: Energy-
minimizing idle listening in wireless networks. IEEE
Transactions on Mobile Computing, 11(9):1441–
1454.
SENSORNETS2015-DoctoralConsortium
20