Effective SAR Image Segmentation and Sea-Ice Floe Distribution Anlysis via Kernel Graph Cuts based Feature Extraction and Fusion

Soumitra Sakhalkar, Jinchang Ren, Phil Hwang, Paul Murray

2015

Abstract

.

References

  1. Berkhin, P., 2002. A survey of clustering data mining techniques, San Jose, CA: Accrue Software.
  2. Boykov, Y. & Funka-Lea, G., 2006. Graph cuts and efficient ND image segmentation. International journal of computer vision, 70(2), pp. 109-131.
  3. Boykov, Y., Veksler, O. & Zabih, R., 2001. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11), pp. 1222-1239.
  4. Buhmann, M. D., 2003. Radial basis functions: theory and implementations. Cambridge: Cambridge university press.
  5. Burns, B. A. et al., 1987. Multisensor comparison of ice concentration estimates in the marginal ice zone. Journal of Geophysical Research: Oceans (1978- 2012), 92(C7), pp. 6843-6856.
  6. Caselles, V., Kimmel, R. & Sapiro, G., 1997. Geodesic active contours. International journal of computer vision, 22(1), pp. 61-79.
  7. Chan, T. F. & Vese, L. A., 2001. Active contours without edges. IEEE transactions on Image processing, 10(2), pp. 266-277.
  8. Clausi, D. A. & Yue, B., 2004. Comparing Cooccurrence Probabilities and Markov Random Fields for Texture Analysis of SAR Sea Ice Imagery. IEEE Transactions on Geoscience and Remote Sensing, 42(1), pp. 215- 228.
  9. Deng, H. & Clausi, D. A., 2005. Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel Markov random field model. IEEE Transactions on Geoscience and Remote Sensing, 43(3), pp. 528-538.
  10. Dhillon, I. S., Guan, Y. & Kulis, B., 2007. Weighted Graph Cuts without Eigenvectors:A Multilevel Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(11), pp. 1944-1957.
  11. Dougherty, E. R. & Lotufo, R. A., 2003. Hands-on morphological image processing. Bellingham: SPIE press.
  12. Eliason, E. M. & McEwen, A. S., 1990. Adaptive box filters for removal of random noise from digital images. Photogrammetric Engineering and Remote Sensing, Volume 56, pp. 453-458.
  13. Fily, M. & Rothrock, D. A., 1990. Opening and closing of sea ice leads: Digital measurements from synthetic aperture radar. Journal of Geophysical Research: Oceans (1978-2012), 95(C1), pp. 789-796.
  14. Frost, V. S. et al., 1981. An adaptive filter for smoothing noisy radar images. s.l., IEEE, pp. 133-135.
  15. Frost, V. S., Stiles, J. A., Shanmugan, K. S. & Holtzman, J., 1982. A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 2, pp. 157-166.
  16. Genton, M. G., 2002. Classes of kernels for machine learning: a statistics perspective. The Journal of Machine Learning Research, Volume 2, pp. 299-312.
  17. Girolami, M., 2002. Mercer kernel-based clustering in feature space. IEEE Transactions on Neural Networks, 13(3), pp. 780-784.
  18. Gonzalez, R. C., Woods, R. E. & Eddins, S. L., 2004. Digital image processing using MATLAB. Upper Saddle River, NJ Jensen: Prentice Hall.
  19. Harini, R. & Chandrasekar, C., 2012. Efficient Pattern Matching Algorithm For Classified Brain Image. International Journal of Computer Applications (0975-8887), 57(4), pp. 5-10.
  20. Haverkamp, D., Soh, L. K. & Tsatsoulis, C., 1995. A comprehensive, automated approach to determining sea ice thickness from SAR data. IEEE Transactions on Geoscience and Remote Sensing , 33(1), pp. 46-57.
  21. Holloway, G. & Sou, T., 2002. Has Arctic sea ice rapidly thinned?. Journal of Climate, 15(13), pp. 1691-1701.
  22. Karvonen, J. A., 2004. Baltic sea ice SAR segmentation and classification using modified pulse-coupled neural networks. IEEE Transactions on Geoscience and Remote Sensing, 42(7), pp. 1566-1574.
  23. Korsnes, R., 1993. Quantitative analysis of sea ice remote sensing imagery. International Journal of Remote Sensing, 14(2), pp. 295-311.
  24. Kwok, R. et al., 2009. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003-2008. Journal of Geophysical Research: Oceans (1978-2012), 114(C7).
  25. Lee, J. S., 1980. IEEE Transactions on Digital Image Enhancement and Noise Filtering by Use of Local Statistics. Pattern Analysis and Machine Intelligence, Volume 2, pp. 165-168.
  26. Lee, J. S., 1981. Speckle analysis and smoothing of synthetic aperture radar images. Computer graphics and image processing, 17(1), pp. 24-32.
  27. Lim, J. S., 1990. Two-dimensional signal and image processing. 1 ed. Englewood Cliffs, NJ: Prentice Hall.
  28. Lloyd, S., 1982. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2), pp. 129- 137.
  29. Luo, Q., Qin, W. J. & Gu, J., 2013. Kernel Graph Cuts Segmentation for MR Images with Intensity Inhomogeneity Correction. Applied Mechanics and Materials, Volume 333-335, pp. 938-943.
  30. Luo, Q. et al., 2013. Segmentation of abdomen MR images using kernel graph cuts with shape priors. Biomedical engineering online, 12(124).
  31. Maslanik, J. A. et al., 2007. A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea ice loss. Geophysical Research Letters , 34(24).
  32. Matheron, G., 1975. Random sets and integral geometry. New York: Wiley.
  33. Miles, B. et al., 2013. Spine image fusion via graph cuts. IEEE Transactions on Biomedical Engineering, 60(7), pp. 1841-1850.
  34. Muller, K. et al., 2001. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 12(2), pp. 181-201.
  35. Qiu, F. et al., 2004. Speckle noise reduction in SAR imagery using a local adaptive median filter. GIScience & Remote Sensing, 41(3), pp. 244-266.
  36. Rother, C., Kolmogorov, V. & Blake, A., 2004. Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics (TOG), August, 23(3), pp. 309-314.
  37. Rothrock, D. A. & Thorndike, A. S., 1984. Measuring the sea ice floe size distribution. Journal of Geophysical Research: Oceans (1978-2012), 89(C4), pp. 6477- 6486.
  38. Salah, M. B., Mitiche, A. & Ayed, I. B., 2011. Multiregion image segmentation by parametric kernel graph cuts. IEEE Transactions on Image Processing, 20(2), pp. 545-557.
  39. Scholkopf, B. et al., 1999. Input space versus feature space in kernel-based methods. Neural Networks. IEEE Transactions on Neural Networks, 10(5), pp. 1000- 1017.
  40. Schölkopf, B., Smola, A. & Müller, K. R., 1998. Nonlinear component analysis as a kernel eigenvalue problem. Neural computation, 10(5), pp. 1299-1319.
  41. Serra, J., 1982. Image analysis and mathematical morphology. s.l.:Academic press.
  42. Serreze, M. C., Holland, M. M. & Stroeve, J., 2007. Perspectives on the Arctic's Shrinking Sea-Ice Cover. Science, 315(5818), pp. 1533-1536.
  43. Sheng, Y. & Xia, Z. G., 1996. A comprehensive evaluation of filters for radar speckle suppression. Geoscience and Remote Sensing Symposium, 1996. IGARSS 7896. 'Remote Sensing for a Sustainable Future.78, International, May, Volume 3, pp. 1559- 1561.
  44. Soh, L. K. & Tsatsoulis, C., 1998. Automated sea ice segmentation (ASIS). s.l., IEEE, pp. 586-588.
  45. Soh, L. K., Tsatsoulis, C., Gineris, D. & Bertoia, C., 2004. ARKTOS: An intelligent system for SAR sea ice image classification. IEEE Transactions on Geoscience and Remote Sensing, 42(1), pp. 229-248.
  46. Stroeve, J. et al., 2008. Arctic sea ice extent plummets in 2007. Transactions American Geophysical Union, 89(2), pp. 13-14.
  47. Tomasi, C. &. M. R., 1998. Bilateral filtering for gray and color images. s.l., IEEE, pp. 839-846.
  48. Vese, L. A. & Chan, T. F., 2002. A multiphase level set framework for image segmentation using the Mumford and Shah model. International journal of computer vision, 50(3), pp. 271-293.
  49. Wong, A., Clausi, D. A. & Fieguth, P., 2009. SEC: Stochastic ensemble consensus approach to unsupervised SAR sea-ice segmentation. s.l., IEEE, pp. 299-305.
  50. Xu, L., Li, J., Wong, A. & Wang, C., 2014. A KPCA texture feature model for efficient segmentation of RADARSAT-2 SAR sea ice imagery. International Journal of Remote Sensing , 35(13 ), pp. 5053-5072.
  51. Zhang, D. & Chen, S., 2002. Fuzzy clustering using kernel method. Xiamen, Fujian Province,, IEEE, pp. 162 - 163 Zhu, S. C. & Yuille, A., 1996. Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(9), pp. 884-900.
Download


Paper Citation


in Harvard Style

Sakhalkar S., Ren J., Hwang P. and Murray P. (2015). Effective SAR Image Segmentation and Sea-Ice Floe Distribution Anlysis via Kernel Graph Cuts based Feature Extraction and Fusion . In Doctoral Consortium - DCSENSORNETS, (SENSORNETS 2015) ISBN Not Available, pages 28-37


in Bibtex Style

@conference{dcsensornets15,
author={Soumitra Sakhalkar and Jinchang Ren and Phil Hwang and Paul Murray},
title={Effective SAR Image Segmentation and Sea-Ice Floe Distribution Anlysis via Kernel Graph Cuts based Feature Extraction and Fusion},
booktitle={Doctoral Consortium - DCSENSORNETS, (SENSORNETS 2015)},
year={2015},
pages={28-37},
publisher={SciTePress},
organization={INSTICC},
doi={},
isbn={Not Available},
}


in EndNote Style

TY - CONF
JO - Doctoral Consortium - DCSENSORNETS, (SENSORNETS 2015)
TI - Effective SAR Image Segmentation and Sea-Ice Floe Distribution Anlysis via Kernel Graph Cuts based Feature Extraction and Fusion
SN - Not Available
AU - Sakhalkar S.
AU - Ren J.
AU - Hwang P.
AU - Murray P.
PY - 2015
SP - 28
EP - 37
DO -