REFERENCES
Andrew and Brady, M. (2004). An Affine Invariant Salient
Region Detector. In European Conference on Com-
puter Vision, pages 228–241.
Berg, A. C., Berg, T. L., and Malik, J. (2005). Shape match-
ing and object recognition using low distortion corre-
spondence. In In CVPR, pages 26–33.
Choras, R. S. (2007). Image feature extraction techniques
and their applications for cbir and biometrics systems.
International Journal of Biology and Biomedical En-
gineering.
Duda, R. O. and Hart, P. E. (1972). Use of the hough trans-
formation to detect lines and curves in pictures. Com-
mun. ACM, 15(1):11–15.
Fergus, R., Perona, P., and Zisserman, A. (2003). Ob-
ject class recognition by unsupervised scale-invariant
learning. In In CVPR, pages 264–271.
Ferzli, R. and Khalife, I. (2011). Mobile cloud comput-
ing educational tool for image/video processing algo-
rithms. In 2011 Digital Signal Processing and Sig-
nal Processing Education Meeting, DSP/SPE 2011,
pages 529–533. Affiliation: Microsoft Corp., Uni-
fied Communications Group, Redmond, WA, United
States; Affiliation: Group of Inf. and Comm. Sys.,
Scientific Park, Universitat de Valencia, Spain; Corre-
spondence Address: Ferzli, R.; Microsoft Corp., Uni-
fied Communications Group, Redmond, WA, United
States; email: rferzli@ieee.org.
Foster, I., Zhao, Y., Raicu, I., and Lu, S. (2008). Cloud
Computing and Grid Computing 360-Degree Com-
pared. 2008 Grid Computing Environments Workshop,
pages 1–10.
Han, L., Saengngam, T., and van Hemert, J. (2010). Accel-
erating data-intensive applications: a cloud comput-
ing approach image pattern recognition tasks. In The
Fourth International Conference on Advanced Engi-
neering Computing and Applications in Sciences.
Hetzel, G., Leibe, B., Levi, P., and Schiele, B. (2001). 3d
object recognition from range images using local fea-
ture histograms. In Proceedings of CVPR 2001, pages
394–399.
Korman, S., Reichman, D., Tsur, G., and Avidan, S.
(2013). Fast-match: Fast affine template matching.
In CVPR’13, pages 2331–2338.
K.Velmurugan and Baboo, L. D. S. (2011). Article: Im-
age retrieval using harris corners and histogram of ori-
ented gradients. International Journal of Computer
Applications, 24(7):6–10. Full text available.
Lisin, D. A., Mattar, M. A., Blaschko, M. B., Benfield,
M. C., and Learned-miller, E. G. (2005). Combining
local and global image features for object class recog-
nition. In In Proceedings of the IEEE CVPR Workshop
on Learning in Computer Vision and Pattern Recogni-
tion, pages 47–55.
L.S.Kmiecik (2013). Cloudcentered,smartphonebasedlong-
termhumanac- tivity recognition solution. IEEE
Transactions on Image Processing.
Malik, J., Dahiya, R., and Sainarayanan, G. (2011). Article:
Harris operator corner detection using sliding window
method. International Journal of Computer Applica-
tions, 22(1):28–37. Full text available.
Nadernejad, E., Sharifzadeh, S., and Hassanpour, H. (2008).
Edge detection techniques: Evaluations and compar-
ison. Applied Mathematical Sciences, 2(31):1507–
1520.
OpenCV. OpenCV.
Patil, N. K., Yadahalli, R. M., and Pujari, J. (2011).
Article: Comparison between hsv and ycbcr color
model color-texture based classification of the food
grains. International Journal of Computer Applica-
tions, 34(4):51–57. Full text available.
Rosten, E., Porter, R., and Drummond, T. (2010). Faster
and better: A machine learning approach to corner
detection. IEEE Trans. Pattern Anal. Mach. Intell.,
32(1):105–119.
S.Arivazhagan1, R.Newlin Shebiah1, S. N. L. (Oct 2010).
Fruit recognition using color and texture features bib-
tex. Journal of Emerging Trends in Computing and
Information Sciences.
Schmid, C. and Mohr, R. (1997). Local grayvalue invariants
for image retrieval. IEEE Trans. Pattern Anal. Mach.
Intell., 19(5):530–535.
Shotton, J. (2005). Contour-based learning for object detec-
tion. In In Proc. ICCV, pages 503–510.
Torralba, A., Murphy, K. P., and Freeman, W. T. (2010).
Using the forest to see the trees: Exploiting context
for visual object detection and localization. Commun.
ACM, 53(3):107–114.
Witten, I. H. and Frank, E. (2005). Data Mining: Practi-
cal Machine Learning Tools and Techniques, Second
Edition (Morgan Kaufmann Series in Data Manage-
ment Systems). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.
Yang, M.-H. (2009). Object recognition. In LIU, L. and
ZSU, M., editors, Encyclopedia of Database Systems,
pages 1936–1939. Springer US.
Zhang, D. and Lu, G. (2004). Review of shape representa-
tion and description techniques. Pattern Recognition,
37(1):1 – 19.
CLOSER2015-5thInternationalConferenceonCloudComputingandServicesScience
86