Clark, P., 2013. Yelp's Newest Weapon Against Fake
Reviews: Lawsuits, http://www.businessweek.com/
articles/2013-09-09/yelps-newest-weapon-against-
fake-reviews-lawsuits.
Clemente, M. L., 2008. Experimental Results on Item-
Based Algorithms for Independent Domain
Collaborative Filtering, Proceedings of AXMEDIS ’08,
IEEE Computer Society, pp. 87-92.
Ding, X., Liu, B., Yu, P.S., 2008. A Holistic Lexicon-
Based Approach to Opinion Mining. WSDM '08
Proceedings of the international conference on Web
search and web data mining, ACM New York, NY,
USA.
Ganu, G., Elhadad, N., Marian, A., 2009. Beyond the
Stars: Improving Rating Predictions using Review
Text Content, Twelfth International Workshop on the
Web and Databases (WebDB 2009), Providence,
Rhode Island, USA.
Ganu, G., Kakodkar, Y., Marian, A., 2012, Improving the
quality of predictions using textual information in
online user reviews”, Information Systems,
http://dx.doi.org/10.1016/j.is.2012.03.001.
Ghose, A., Ipeirotis, P. G., 2007. Designing novel review
ranking systems: Pre- dicting usefulness and impact of
reviews, in Proceedings of the International
Conference on Electronic Commerce (ICEC).
Govindarajan, M., 2014, Sentiment Analysis of Restaurant
Reviews Using Hybrid Classification Method,
International Journal of Soft Computing and Artificial
Intelligence, Vol. 2, Issue 1.
Hinton, G., 2012, A Practical Guide to Training Restricted
Boltzmann Machines, Neural Networks: Tricks of the
Trade, Lecture Notes in Computer Science Volume
7700, pp 599-619.
Huang, J., Rogers, S., Joo, E., 2014. Improving
Restaurants by Extracting Subtopics from Yelp
Reviews, SOCIAL MEDIA EXPO, https://www.
ideals.illinois.edu/bitstream/handle/2142/48832/Huang
-iConference2014-SocialMediaExpo.pdf ?sequence=2.
Jahrer, M., Töscher, A., Legenstein, R., 2010. Combining
Predictions for Accurate Recommender Systems,
Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining, pp 693-702, ACM, 2010.
Jong, J., 2011. Predicting Rating with Sentiment Analysis
http://cs229.stanford.edu/proj2011/Jong-
%20PredictingRatingwithSentimentAnalysis.pdf.
Koren, Y., 2009. The bellkor solution to the netflix
granprize, http://www.netflixprize.com/assets/Grand
Prize2009_BPC_BellKor.pdf.
Koren, Y., Bell, R., Volinsky, C., 2009. Matrix
Factorization Techniques for Recommender Systems,
Computer, IEEE Computer Society, v. 42, n. 8.
Koukourikos, A., Stoisis, G., Karampiperis, P., 2012.
Sentiment Analysis: A tool for Rating Attribution to
Content in Recommender Systems. Presented at the
2nd Workshop on Recommender Systems for
Technology Enhances Learning (RecSysTEL 2012),
18-19/09/2012, Saarbrucken, Germany.
Lee, D., Jeong, O.R., Lee, S., 2008. Opinion Mining of
customer feedback data on the web. In ICUIMC '08
Proceedings of the 2nd international conference on
Ubiquitous information management communication.
Levi, A., Mokryn, O., Diot, C., Taft, N., 2012. Find-ing a
needle in a haystack of reviews: cold start context-
based hotel recommender system. In Proceedings of
the sixth ACM conference on Recommender systems,
pages 115–122. ACM, 2012.
Linden, G., Smith, B., York, J., 2003. Amazon.com
Recommendations, IEEE Internet Computing, vol. 07,
n. 1, pp. 76-80.
Miller, G., 1998. WordNet: An Electronic Lexical
Database, Bradford Books.
Mingming, F., Khademi, Maryam, 2014. Predicting a
Business Star in Yelp from Its Reviews Text Alone.
ArXiv e-prints: 1401.0864.
Owen, S., Anil, R., Dunning, T., Friedman E., 2011.
Mahout in Action, Manning Publications Co., ISBN:
9781935182689.
Pang B., Lee L., 2008. Opinion mining and sentiment
analysis. Foundations and Trends in Information
Retrieval 2(1-2), pp. 1–135. DOI: 10.1561/1500000011.
Paterek, A., 2007. Improving regularized singular value
decomposition for collaborative filtering, Proc.
KDDCup and Workshop, ACM Press, pp. 39-42.
Quadrana, M., 2013. E-tourism recommender systems
http://hdl.handle.net/10589/84901.
Sarwar, B., Karypis, G., Konstan, J., J. Riedl, J., 2001.
Item-Based Collaborative Filtering Recommendation
Algorithms, in Proc. IEEE Internet Computing, 10th
International World Wide Web Conference.
Shelter, S. & Owen, S., 2012, Collaborative Filtering with
Apache Mahout, RecSysChallenge’12.
Schmid, H., 1994. Probabilistic Part-of-Speech Tagging
Using Decision Trees. In Proceedings of the
International Conference on New Methods in
Language Processing, pp. 44-49.
Singh, V. K., Mukherjee, M., Mehta, G. K., 2011.
Combining Collaborative Filtering and Sentiment
Classification for Improved Movie Recommendations.
In Sombattheera et al. (Eds.): Multi-disciplinary
Thrends in Artificial Intelligence, LNAI 7080,
Springer-Verlag, Berlin Heidelberg, pp. 38-50.
Tosher, A., Jahrer, M., Bell, R. M., 2009. The BigChaos
solution to the Netflix grand prize, Netflix Prize
Documentation.
Trevisiol, M., Chiarandini, L., Baeza-Yates, R., 2014.
Buon Appetito - Recommending Personalized menus.
Tuveri, F., Angioni, M., 2012. A Linguistic Approach to
Feature Extraction Based on a Lexical Database of the
Properties of Adjectives and Adverbs, Global
WordNet Conference (GWC2012), Matsue, Japan.
Wu, Y., Ester, M., 2015, FLAME: A Probabilistic Model
Combining Aspect Based Opinion Mining and
Collaborative Filtering, WSDM’2015, Shanghai,
China.
WEBIST2015-11thInternationalConferenceonWebInformationSystemsandTechnologies
380