tions. ACM Trans. Knowl. Discov. Data, 5(2):10:1–
10:27.
Ebbinghaus, H. (1913). Memory: A contribution to ex-
perimental psychology. Number 3. Teachers college,
Columbia university.
Ermis, B., Acar, E., and Cemgil, A. T. (2012). Link pre-
diction via generalized coupled tensor factorisation.
CoRR, abs/1208.6231.
Friedman, N., Getoor, L., Koller, D., and Pfeffer, A. (1999).
Learning probabilistic relational models. In In IJCAI,
pages 1300–1309. Springer-Verlag.
Gao, S., Denoyer, L., and Gallinari, P. (2012). Proba-
bilistic latent tensor factorization model for link pat-
tern prediction in multi-relational networks. CoRR,
abs/1204.2588.
Gutirrez-Basulto, V. and Klarman, S. (2012). Towards a
unifying approach to representing and querying tem-
poral data in description logics. In Krtzsch, M. and
Straccia, U., editors, Web Reasoning and Rule Sys-
tems, volume 7497 of Lecture Notes in Computer Sci-
ence, pages 90–105. Springer Berlin Heidelberg.
Khosravi, H. and Bina, B. (2010). A survey on statistical
relational learning. In Proceedings of the 23rd Cana-
dian conference on Advances in Artificial Intelligence,
AI’10, pages 256–268, Berlin, Heidelberg. Springer-
Verlag.
Kolda, T. G. and Bader, B. W. (2009). Tensor decomposi-
tions and applications. SIAM Rev., 51(3):455–500.
Kopecky, J., Vitvar, T., Bournez, C., and Farrell, J. (2007).
Sawsdl: Semantic annotations for wsdl and xml
schema. Internet Computing, IEEE, 11(6):60 –67.
Li, D., Xu, Z., Li, S., and Sun, X. (2013). Link prediction
in social networks based on hypergraph. In Proceed-
ings of the 22Nd International Conference on World
Wide Web Companion, WWW ’13 Companion, pages
41–42, Republic and Canton of Geneva, Switzerland.
International World Wide Web Conferences Steering
Committee.
London, B., Rekatsinas, T., Huang, B., and Getoor, L.
(2013). Multi-relational learning using weighted
tensor decomposition with modular loss. CoRR,
abs/1303.1733.
Ngomo, A.-C. N. and Auer, S. (2011). Limes: A time-
efficient approach for large-scale link discovery on the
web of data. In Proceedings of the Twenty-Second In-
ternational Joint Conference on Artificial Intelligence
- Volume Volume Three, IJCAI’11, pages 2312–2317.
AAAI Press.
Nickel, M., Tresp, V., and Kriegel, H.-P. (2011). A three-
way model for collective learning on multi-relational
data. In Getoor, L. and Scheffer, T., editors, Proceed-
ings of the 28th International Conference on Machine
Learning (ICML-11), ICML ’11, pages 809–816, New
York, NY, USA. ACM.
Nickel, M., Tresp, V., and Kriegel, H.-P. (2012). Factorizing
yago: scalable machine learning for linked data. In
Proceedings of the 21st international conference on
World Wide Web, WWW ’12, pages 271–280, New
York, NY, USA. ACM.
Oyama, S., Hayashi, K., and Kashima, H. (2011). Cross-
temporal link prediction. In Proceedings of the 2011
IEEE 11th International Conference on Data Mining,
ICDM ’11, pages 1188–1193, Washington, DC, USA.
IEEE Computer Society.
Raymond, R. and Kashima, H. (2010). Fast and scalable al-
gorithms for semi-supervised link prediction on static
and dynamic graphs. In Balczar, J., Bonchi, F., Gio-
nis, A., and Sebag, M., editors, Machine Learning and
Knowledge Discovery in Databases, volume 6323 of
Lecture Notes in Computer Science, pages 131–147.
Springer Berlin Heidelberg.
Rula, A., Palmonari, M., Harth, A., Stadtmller, S., and
Maurino, A. (2012). On the diversity and availabil-
ity of temporal information in linked open data. In
Cudr-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T.,
Euzenat, J., Hauswirth, M., Parreira, J., Hendler, J.,
Schreiber, G., Bernstein, A., and Blomqvist, E., edi-
tors, The Semantic Web ISWC 2012, volume 7649 of
Lecture Notes in Computer Science, pages 492–507.
Springer Berlin Heidelberg.
Spiegel, S., Clausen, J., Albayrak, S., and Kunegis, J.
(2012). Link prediction on evolving data using ten-
sor factorization. In Proceedings of the 15th interna-
tional conference on New Frontiers in Applied Data
Mining, PAKDD’11, pages 100–110, Berlin, Heidel-
berg. Springer-Verlag.
Symeonidis, P. and Perentis, C. (2014). Link prediction in
multi-modal social networks. In Calders, T., Espos-
ito, F., Hllermeier, E., and Meo, R., editors, Machine
Learning and Knowledge Discovery in Databases,
volume 8726 of Lecture Notes in Computer Science,
pages 147–162. Springer Berlin Heidelberg.
Taskar, B., fai Wong, M., Abbeel, P., and Koller, D. (2003).
Link prediction in relational data. In in Neural Infor-
mation Processing Systems.
Vitvar, T., Kopeck
´
y, J., Viskova, J., and Fensel, D. (2008).
WSMO-Lite Annotations for Web Services. In ESWC,
pages 674–689.
Time-awareLinkPredictioninRDFGraphs
401