objective optimization context, several challenges
need to be addressed for online (dynamic) formula-
tions of the problem, considering multi-objective and
many-objective approaches. At the same time, diffe-
rent meta-heuristics, methods and algorithms should
be still tested before a real good tool is ready for mas-
sive use in commercial cloud computing datacenters.
REFERENCES
Anand, A., Lakshmi, J., and Nandy, S. (2013). Virtual ma-
chine placement optimization supporting performance
slas. In Cloud Computing Technology and Science
(CloudCom), 2013 IEEE 5th International Confer-
ence on, volume 1, pages 298–305. IEEE.
B
´
aez, M., Z
´
arate, D., and Bar
´
an, B. (2007). Algorit-
mos mem
´
eticos adaptativos para optimizaci
´
on multi-
objetivo. In XXXIII Conferencia Latinoamericana de
Inform
´
atica–CLEI, volume 2007.
Barroso, L. A. and H
¨
olzle, U. (2007). The case for energy-
proportional computing. IEEE computer, 40(12):33–
37.
Beloglazov, A., Abawajy, J., and Buyya, R. (2012). Energy-
aware resource allocation heuristics for efficient man-
agement of data centers for cloud computing. Future
Generation Computer Systems, 28(5):755–768.
Beloglazov, A., Buyya, R., Lee, Y. C., Zomaya, A., et al.
(2011). A taxonomy and survey of energy-efficient
data centers and cloud computing systems. Advances
in Computers, 82(2):47–111.
Bin, E., Biran, O., Boni, O., Hadad, E., Kolodner, E. K.,
Moatti, Y., and Lorenz, D. H. (2011). Guarantee-
ing high availability goals for virtual machine place-
ment. In Distributed Computing Systems (ICDCS),
2011 31st International Conference on, pages 700–
709. IEEE.
Cheng, J., Yen, G. G., and Zhang, G. (2014). A many-
objective evolutionary algorithm based on directional
diversity and favorable convergence. In Systems,
Man and Cybernetics (SMC), 2014 IEEE Interna-
tional Conference on, pages 2415–2420.
Coello, C. C., Lamont, G. B., and Van Veldhuizen, D. A.
(2007). Evolutionary algorithms for solving multi-
objective problems. Springer.
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
A fast and elitist multiobjective genetic algorithm:
Nsga-ii. Evolutionary Computation, IEEE Transac-
tions on, 6(2):182–197.
Deb, K., Sinha, A., and Kukkonen, S. (2006). Multi-
objective test problems, linkages, and evolutionary
methodologies. In Proceedings of the 8th annual
conference on Genetic and evolutionary computation,
pages 1141–1148. ACM.
Donoso, Y., Fabregat, R., Solano, F., Marzo, J.-L., and
Bar
´
an, B. (2005). Generalized multiobjective multi-
tree model for dynamic multicast groups. In Commu-
nications, 2005. ICC 2005. 2005 IEEE International
Conference on, volume 1, pages 148–152. IEEE.
Farina, M. and Amato, P. (2002). On the optimal solution
definition for many-criteria optimization problems. In
Proceedings of the NAFIPS-FLINT international con-
ference, pages 233–238.
Gao, Y., Guan, H., Qi, Z., Hou, Y., and Liu, L. (2013). A
multi-objective ant colony system algorithm for vir-
tual machine placement in cloud computing. Journal
of Computer and System Sciences, 79(8):1230–1242.
L
´
opez Pires, F. and Bar
´
an, B. (2013). Multi-objective vir-
tual machine placement with service level agreement.
In Proceedings of the 2013 IEEE/ACM 6th Interna-
tional Conference on Utility and Cloud Computing,
pages 203–210. IEEE Computer Society.
L
´
opez Pires, F. and Bar
´
an, B. (2015). A virtual machine
placement taxonomy. In Proceedings of the 2015
IEEE/ACM 15th International Symposium on Cluster,
Cloud and Grid Computing. IEEE Computer Society.
Mishra, M. and Sahoo, A. (2011). On theory of vm
placement: Anomalies in existing methodologies and
their mitigation using a novel vector based approach.
In Cloud Computing (CLOUD), 2011 IEEE Interna-
tional Conference on, pages 275–282. IEEE.
Sato, K., Samejima, M., and Komoda, N. (2013). Dy-
namic optimization of virtual machine placement by
resource usage prediction. In Industrial Informatics
(INDIN), 2013 11th IEEE International Conference
on, pages 86–91. IEEE.
Shi, L., Butler, B., Botvich, D., and Jennings, B. (2013).
Provisioning of requests for virtual machine sets with
placement constraints in iaas clouds. In Integrated
Network Management (IM 2013), 2013 IFIP/IEEE In-
ternational Symposium on, pages 499–505. IEEE.
Shrivastava, V., Zerfos, P., Lee, K.-W., Jamjoom, H., Liu,
Y.-H., and Banerjee, S. (2011). Application-aware vir-
tual machine migration in data centers. In INFOCOM,
2011 Proceedings IEEE, pages 66–70. IEEE.
Sun, M., Gu, W., Zhang, X., Shi, H., and Zhang, W. (2013).
A matrix transformation algorithm for virtual machine
placement in cloud. In Trust, Security and Privacy
in Computing and Communications (TrustCom), 2013
12th IEEE International Conference on, pages 1778–
1783. IEEE.
Tom
´
as, L. and Tordsson, J. (2013). Improving cloud infras-
tructure utilization through overbooking. In Proceed-
ings of the 2013 ACM Cloud and Autonomic Comput-
ing Conference, CAC ’13, pages 5:1–5:10, New York,
NY, USA. ACM.
von L
¨
ucken, C., Bar
´
an, B., and Brizuela, C. (2014). A
survey on multi-objective evolutionary algorithms for
many-objective problems. Computational Optimiza-
tion and Applications, pages 1–50.
CLOSER2015-5thInternationalConferenceonCloudComputingandServicesScience
450