Busso, T., Denis, C., Bonnefoy, R., Geyssant, A., and La-
cour, J.-R. (1997). Modeling of adaptations to phys-
ical training by using a recursive least squares algo-
rithm. Journal of applied physiology, 82(5):1685–
1693.
Calvert, T. W., Banister, E. W., Savage, M. V., and Bach, T.
(1976). A systems model of the effects of training on
physical performance. IEEE Transactions on Systems,
Man and Cybernetics, (2):94–102.
Cheng, T., Savkin, A., and Celler, B. (2008). Nonlinear
modeling and control of human heart rate response
during exercise with various work load intensities.
Biomedical Engineering, IEEE Transactions on.
Cheng, T. M., Savkin, A. V., Celler, B. G., Wang, L., and
Su, S. W. (2007). A nonlinear dynamic model for
heart rate response to treadmill walking exercise. In
2007 IEEE Int. Conf. on Engineering in Medicine and
Biology Society (EMBS), pages 2988–2991. IEEE.
Costa, T., Boccignone, G., and Ferraro, M. (2012). Gaus-
sian mixture model of heart rate variability. PloS one,
7(5):e37731.
Feng Xiao, Yimin Chen, Ming Yuchi, Mingyue Ding, and
Jun Jo (2010). Heart Rate Prediction Model Based
on Physical Activities UsingEvolutionary Neural Net-
work. In 2010 Fourth International Conference on
Genetic and Evolutionary Computing, pages 198–
201. IEEE.
Graf, C., Bjarnason-Wehrens, B., Rost, R., Foitschik, T.,
Lagerstr¨om, D., and Quilling, E. (2014). Sport-
und Bewegungstherapie bei inneren Krankheiten:
Lehrbuch f¨ur Sportlehrer,
¨
Ubungsleiter, Physiothera-
peuten und Sportmediziner. Deutscher
¨
Arzte-Verlag.
Hajek, M., Potucek, J., and Brodan, V. (1980). Mathemati-
cal model of heart rate regulation during exercise. Au-
tomatica, 16(2):191–195.
Javed, F., Chan, G. S. H., Savkin, A. V., Middleton, P. M.,
Malouf, P., Steel, E., Mackie, J., and Lovell, N. H.
(2009). RBF kernel based support vector regression
to estimate the blood volume and heart rate responses
during hemodialysis. International Conference of the
IEEE Engineering in Medicine and Biology Society,
2009:4352–5.
Koenig, A., Somaini, L., and Pulfer, M. (2009). Model-
based heart rate prediction during lokomat walking.
Engineering in Medicine and Biology Society, 2009.
EMBC 2009. Annual International Conference of the
IEEE.
Lefever, J., Berckmans, D., and Aerts, J.-M. (2014). Time-
variant modelling of heart rate responses to exercise
intensity during road cycling. European Journal of
Sport Science, 14(sup1):S406–S412.
Leitner, T., Kirchsteiger, H., Trogmann, H., and del Re, L.
(2014). Model based control of human heart rate on
a bicycle ergometer. In Control Conference (ECC),
2014 European, pages 1516–1521. IEEE.
Mohammad, S., Guerra, T. M., GROBOIS, J. M., and Hec-
quet, B. (2011). Heart rate control during cycling exer-
cise using takagi-sugeno models. In 18th IFAC World
Congress, Milano (Italy).
M¨uller, F., M¨ulller, S., Helmer, A., and Hein, A. (2014).
Evaluation of a generic heart rate model for exercise
planning and execution across training modalities.
Nichols, M., Townsend, N., Luengo-Fernandez, R., Leal, J.,
Gray, A., Scarborough, P., and Rayner, M. (2012). Eu-
ropean Cardiovascular Disease Statistics 2012. Eu-
ropean Heart Network, Brussels, European Society of
Cardiology, Sophia Antipolis.
Paradiso, M., Pietrosanti, S., Scalzi, S., Tomei, P., and Ver-
relli, C. (2013). Experimental heart rate regulation
in cycle-ergometer exercises. IEEE Transactions on
Biomedical Engineering, 60(1):135–139.
Rosenblatt, F. (1961). Principles of Neurodynamics: Per-
ceptrons and the Theory of Brain Mechanisms.
Seal, H. L. (1967). Studies in the History of Probability
and Statistics. XV The historical development of the
Gauss linear model. Biometrika, 54(1-2):1–24.
Smola, A. J. and Sch¨olkopf, B. (2004). A tutorial on
support vector regression. Statistics and Computing,
14(3):199–222.
Su, S., Wang, L., Celler, B., Savkin, A., and Guo, Y. (2007).
Identification and control for heart rate regulation dur-
ing treadmill exercise. Biomedical Engineering, IEEE
Transactions on, 54(7):1238–1246.
Sumida, M., Mizumoto, T., and Yasumoto, K. (2013). Esti-
mating heart rate variation during walking with smart-
phone. page 245. ACM Press.
Tabachnick, B. G. and Fidell, L. S. (2006). Using Multi-
variate Statistics (5th Edition).
Vapnik, V. (1995). The Nature of Statistical Learning The-
ory.
Velikic, G., Modayil, J., Thomsen, M., Bocko, M., and
Pentland, A. (2011). Predicting the near-future im-
pact of daily activities on heart rate for at-risk pop-
ulations. In e-Health Networking Applications and
Services (Healthcom), 2011 13th IEEE International
Conference on, pages 94–97. IEEE.
Wang, L., Su, S. W., and Celler, B. G. (2009). Assessing
the human cardiovascular response to moderate exer-
cise: feature extraction by support vector regression.
Physiological Measurement.
WHO (2012). Demographic change, life expectancy and
mortality trends in europe: fact sheet. In The Euro-
pean health report 2012. World Health Organization.
Zhang, Y. (2013). Monitoring, Modeling, and Regulation
for Indoor and Outdoor Exercises. PhD thesis, Uni-
versity of Technology, Sydney.
OnModelingtheCardiovascularSystemandPredictingtheHumanHeartRateunderStrain
117