Science’12), pages 1–9, USA. IEEE Computer
Society.
Stodden, V. C. (2010). Reproducible research: Addressing
the need for data and code sharing in computational
science. Computing in Science & Engineering, 12.
Chirigati, F., Shasha, D., and Freire, J. (2013). Reprozip:
Using provenance to support computational
reproducibility. In Proceedings of the 5th USENIX
Workshop on the Theory and Practice of Provenance,
TaPP ’13, pages 1–4, Berkeley, USA. USENIX
Association.
Oliveira, D., Ogasawara, E., Bai ̃ao, F., and Mattoso, M.
(2010). Scicumulus: A lightweight cloud middleware
to explore many task computing paradigm in scientific
workflows. In Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on, pages 378–385.
Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G.,
Patil, S., Su, M.-H., Vahi, K., and Livny, M. (2004).
Pegasus: Mapping scientific workflows onto the grid.
In Dikaiakos, M., editor, Grid Computing, volume
3165 of Lecture Notes in Computer Science, pages
11–20. Springer Berlin Heidelberg.
Deelman, E., Gannon, D., Shields, M., and Taylor, I.
(2008). Workflows and e-science: An overview of
workflow system features and capabilities.
Foster, I. and Kesselman, C., editors (1999). The Grid:
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers Inc., USA.
Foster, I., V ̈ockler, J., Wilde, M., and Zhao, Y. (2002).
Chimera: a virtual data system for representing,
querying, and automating data derivation. In Scientific
and Statistical Database Management, Proceedings.
14th International Conference on, pages 37–46.
Foster, I., Zhao, Y., Raicu, I., and Lu, S. (2008). Cloud
computing and grid com- puting 360-degree
compared. In Grid Computing Environments
Workshop, 2008. GCE ’08, pages 1–10.
Groth, P., Deelman, E., Juve, G., Mehta, G., and
Berriman, B. (2009). Pipeline- centric provenance
model. In Proceedings of the 4th Workshop on Work-
flows in Support of Large-Scale Science, WORKS
’09, pages 4:1–4:8, USA. ACM.
Howe, B. (2012). Virtual appliances, cloud computing,
and reproducible re- search. Computing in Science
Engineering, 14(4):36–41.
Janin, Y., Vincent, C., and Duraffort, R. (2014). Care, the
comprehensive archiver for reproducible execution. In
Proceedings of the 1st ACM SIG- PLAN Workshop
on Reproducible Research Methodologies and New
Publication Models in Computer Engineering, TRUST
’14, pages 1:1–1:7, USA. ACM.
Juve, G. and Deelman, E. (2010). Scientific workflows
and clouds. Crossroads, 16(3):14–18.
Kim, J., Deelman, E., Gil, Y., Mehta, G., and Ratnakar, V.
(2008). Provenance trails in the wings-pegasus system.
Concurr. Comput. : Pract. Exper., 20(5):587–597.
Ko, R., Lee, B., and Pearson, S. (2011). Towards
achieving accountability, auditability and trust in
cloud computing. In Advances in Computing and
Communications, volume 193 of Communications in
Computer and Information Science, pages 432–444.
Springer Berlin Heidelberg.
Lifschitz, S., Gomes, L., and Rehen, S. K. (2011). Dealing
with reusability and reproducibility for scientific
workflows. In Bioinformatics and Biomedicine
Workshops (BIBMW), 2011 IEEE International
Conference on, pages 625–632. IEEE. 38, 69.
Macko, P., Chiarini, M., and Seltzer, M. (2011).
Collecting provenance via the xen hypervisor. 3rd
USENIX Workshop on the Theory and Practice of
Provenance (TAPP).
Mehmood, Y., Habib, I., Bloodsworth, P., Anjum, A.,
Lansdale, T., and McClatchey, R. (2009). A
middleware agnostic infrastructure for neuro- imaging
analysis. In Computer-Based Medical Systems, 2009.
CBMS 2009. 22nd IEEE International Symposium on,
pages 1–4.
Mei, L., Chan, W. K., and Tse, T. H. (2008). A tale of
clouds: Paradigm comparisons and some thoughts on
research issues. In Proceedings of the 2008 IEEE
Asia-Pacific Services Computing Conference, APSCC
’08, pages 464–469, USA. IEEE Computer Society.
Mell, P. M. and Grance, T. (2011). Sp 800-145. the nist
definition of cloud computing. Technical report,
Gaithersburg, MD, United States.
Missier, P., Woodman, S., Hiden, H., and Watson, P.
(2013). Provenance and data differencing for
workflow reproducibility analysis. Concurrency and
Computation: Practice and Experience.
Munir, K., Kiani, S. L., Hasham, K., McClatchey, R.,
Branson, A., and Sham- dasani, J. (2013). An
integrated e-science analysis base for computation
neuroscience experiments and analysis. Procedia -
Social and Behavioral Sciences, 73(0):85 – 92.
Proceedings of the 2nd International Conference on
Integrated Information (IC-ININFO 2012), Budapest,
Hungary, August 30 – September 3, 2012.
Munir, K., Liaquat Kiani, S., Hasham, K., McClatchey, R.,
Branson, A., and Shamdasani, J. (2014). Provision of
an integrated data analysis platform for computational
neuroscience experiments. Journal of Systems and In-
formation Technology, 16(3):150–169.
Ramakrishnan, L. and Plale, B. (2010). A multi-
dimensional classification model for scientific
workflow characteristics. In Proceedings of the 1st
International Workshop on Workflow Approaches to
New Data-centric Science, Wands ’10, pages 4:1–
4:12, USA. ACM.
Roure, D. D., Manuel, J., Hettne, K., Belhajjame, K.,
Palma, R., Klyne, G., Missier, P., Ruiz, J. E., and
Goble, C. (2011). Towards the preservation of
scientific workflows. In Procs. of the 8th International
Conference on Preservation of Digital Objects (iPRES
2011). ACM.
Sandve, G. K., Nekrutenko, A., Taylor, J., and Hovig, E.
(2013). Ten sim- ple rules for reproducible
computational research. PLoS Comput Biol,
9(10):e1003285.
Santana-Perez, I., Ferreira da Silva, R., Rynge, M.,
Deelman, E., P ́erez- Hern ́andez, M., and Corcho, O.
CLOSER2015-5thInternationalConferenceonCloudComputingandServicesScience
58