ceedings of the 6th International Conference on Au-
tonomic Computing, ICAC ’09, pages 13–22, New
York, NY, USA. ACM.
Kang, H., Chen, H., and Jiang, G. (2010). Peerwatch: A
fault detection and diagnosis tool for virtualized con-
solidation systems. In Proceedings of the 7th Inter-
national Conference on Autonomic Computing, ICAC
’10, pages 119–128, New York, NY, USA. ACM.
Kephart, J. O. and Chess, D. M. (2003). The vision of auto-
nomic computing. Computer, 36(1):41–50.
Kumar, V., Cooper, B. F., Eisenhauer, G., and Schwan,
K. (2007). imanage: Policy-driven self-management
for enterprise-scale systems. In Proceedings of the
ACM/IFIP/USENIX 2007 International Conference
on Middleware, Middleware ’07, pages 287–307, New
York, NY, USA. Springer-Verlag New York, Inc.
Li, D., Jin, H., Liao, X., Zhang, Y., and Zhou, B. (2013).
Improving disk i/o performance in a virtualized sys-
tem. J. Comput. Syst. Sci., 79(2):187–200.
Lou, J.-G., Fu, Q., Yang, S., Xu, Y., and Li, J. (2010). Min-
ing invariants from console logs for system problem
detection. In Proceedings of the 2010 USENIX Con-
ference on USENIX Annual Technical Conference,
USENIXATC’10, pages 24–24, Berkeley, CA, USA.
USENIX Association.
Olston, C., Reed, B., Srivastava, U., Kumar, R., and
Tomkins, A. (2008). Pig latin: A not-so-foreign lan-
guage for data processing. In Proceedings of the 2008
ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’08, pages 1099–1110, New
York, NY, USA. ACM.
Oppenheimer, D., Ganapathi, A., and Patterson, D. A.
(2003). Why do internet services fail, and what can be
done about it? In Proceedings of the 4th Conference
on USENIX Symposium on Internet Technologies and
Systems - Volume 4, USITS’03, pages 1–1, Berkeley,
CA, USA. USENIX Association.
Pertet, S. and Narasimhan, P. (2005). Causes of failure in
web applications. Technical report, CMU-PDL-05-
109.
Rabkin, A. and Katz, R. (2010). Chukwa: A system for re-
liable large-scale log collection. In Proceedings of the
24th International Conference on Large Installation
System Administration, LISA’10, pages 1–15, Berke-
ley, CA, USA. USENIX Association.
Rajasekar, N. C. and Imafidon, C. (2010). Exploitation of
vulnerabilities in cloud storage. In Proceedings of the
First International Conference on Cloud Computing,
GRIDs, and Virtualization, pages 122–127.
Rouillard, J. P. (2004). Refereed papers: Real-time log file
analysis using the simple event correlator (sec). In
Proceedings of the 18th USENIX Conference on Sys-
tem Administration, LISA ’04, pages 133–150, Berke-
ley, CA, USA. USENIX Association.
Shvachko, K., Kuang, H., Radia, S., and Chansler, R.
(2010). The hadoop distributed file system. In Pro-
ceedings of the 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), MSST
’10, pages 1–10, Washington, DC, USA. IEEE Com-
puter Society.
Sigar (2014). https://support.hyperic.com/display/sigar/home.
Tan, J., Kavulya, S., Gandhi, R., and Narasimhan, P.
(2012). Light-weight black-box failure detection for
distributed systems. In Proceedings of the 2012 Work-
shop on Management of Big Data Systems, MBDS
’12, pages 13–18, New York, NY, USA. ACM.
The, J. P. and Prewett, J. E. (2003). Analyzing cluster log
files using logsurfer. In in Proceedings of the 4th An-
nual Conference on Linux Clusters.
Virt-Top (2014). http://virt-tools.org/about/.
Vora, M. (2011). Hadoop-hbase for large-scale data. In
Computer Science and Network Technology (ICC-
SNT), 2011 International Conference on, volume 1,
pages 601–605.
Wang, C. (2009). Ebat: Online methods for detecting utility
cloud anomalies. In Proceedings of the 6th Middle-
ware Doctoral Symposium, MDS ’09, pages 4:1–4:6,
New York, NY, USA. ACM.
Ward, J. S. and Barker, A. (2013). Varanus: In situ mon-
itoring for large scale cloud systems. In Proceed-
ings of the 2013 IEEE International Conference on
Cloud Computing Technology and Science - Volume
02, CLOUDCOM ’13, pages 341–344, Washington,
DC, USA. IEEE Computer Society.
Xu, W., Huang, L., Fox, A., Patterson, D., and Jordan,
M. I. (2009). Detecting large-scale system prob-
lems by mining console logs. In Proceedings of
the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP ’09, pages 117–132, New
York, NY, USA. ACM.
ALightweightToolforAnomalyDetectioninCloudDataCentres
351