IEEE Int. Conf. on Image Processing (ICIP), pages
2653–2656.
Albrecht, T., Tan, T., West, G., Ly, T., and Moncrieff, S.
(2011a). Vision-based attention in maritime environ-
ments. In Communications and Signal Processing
(ICICS) 2011 8th Int. Conf. on Information,pages 1–5.
Albrecht, T., West, G., Tan, T., and Ly, T. (2010). Multi-
ple views tracking of maritime targets. In 2010 Int.
Conf. on Digital Image Computing: Techniques and
Applications (DICTA), pages 302–307.
Albrecht, T., West, G., Tan, T., and Ly, T. (2011b). Vi-
sual maritime attention using multiple low-level fea-
tures and na #x0ef;ve bayes classification. In 2011 Int.
Conf. on Digital Image Computing Techniques and
Applications (DICTA), pages 243–249.
Alexe, B., Deselaers, T., and Ferrari, V. (2010). What is an
object? In 2010 IEEE Conf. on Comp. Vis. and Pat.
Rec. (CVPR), pages 73–80.
Auslander, B., Gupta, K. M., and Aha, D. W. (2011). A
comparative evaluation of anomaly detection algo-
rithms for maritime video surveillance. volume 8019,
pages 801907–801907–14.
Belkin, M. and Niyogi, P. (2002). Using manifold structure
for partially labelled classification. page 929.
Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine Learning, 20(3):273–297.
Doulamis, N. and Doulamis, A. (2012). Fast and adaptive
deep fusion learning for detecting visual objects. In
Fusiello, A., Murino, V., and Cucchiara, R., editors,
Comp. Vis. ECCV 2012. Workshops and Demonstra-
tions, number 7585 in Lecture Notes in Computer Sci-
ence, pages 345–354. Springer Berlin Heidelberg.
Fischer, Y. and Bauer, A. (2010). Object-oriented sensor
data fusion for wide maritime surveillance. In Water-
side Security Conf. (WSS), 2010 Int., pages 1–6.
Kaimakis, P. and Tsapatsoulis, N. (2013). Background
modeling methods for visual detection of maritime
targets. In Proceedings of the 4th ACM/IEEE Int.
Workshop on Anal. and Retrieval of Tracked Events
and Motion in Imagery Stream, ARTEMIS ’13, pages
67–76, New York, NY, USA. ACM.
Lei, P.-R. (2013). Exploring trajectory behavior model for
anomaly detection in maritime moving objects. In
2013 IEEE Int. Conf. on Intelligence and Security In-
formatics (ISI), pages 271–271.
Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X.,
and Shum, H.-Y. (2011). Learning to detect a salient
object. IEEE Trans. on Pat. Anal. and Machine Intel-
ligence, 33(2):353–367.
Liu, W., He, J., and Chang, S.-F. (2010). Large graph
construction for scalable semi-supervised learning. In
Proceedings of the 27th Int. Conf. on Machine Learn-
ing (ICML-10), pages 679–686.
Makantasis, K., Doulamis, A., and Doulamis, N. (2013).
Vision-based maritime surveillance system using
fused visual attention maps and online adaptable
tracker. In 2013 14
th
Int. Workshop on Image Anal. for
Multimedia Interactive Services (WIAMIS),pages 1–4.
Makantasis, K., Doulamis, A., and Matsatsinis, N. (2012).
Student-t background modeling for persons’ fall de-
tection through visual cues. In 2012 13th Int. Work-
shop on Image Anal. for Multimedia Interactive Ser-
vices (WIAMIS), pages 1–4.
Maresca, S., Greco, M., Gini, F., Grasso, R., Coraluppi, S.,
and Horstmann, J. (2010). Vessel detection and clas-
sification: An integrated maritime surveillance system
in the tyrrhenian sea. In 2010 2
nd
Int. Workshop on
Cognitive Information Processing (CIP),pages 40–45.
McIlhagga, W. (2011). The canny edge detector revisited.
Int. Journal of Comp. Vis., 91(3):251–261.
Nadler, B., Srebro, N., and Zhou, X. (2009). Statistical anal-
ysis of semi-supervised learning: The limit of infinite
unlabelled data. In Bengio, Y., Schuurmans, D., Laf-
ferty, J. D., Williams, C. K. I., and Culotta, A., editors,
Advances in Neural Information Processing Systems
22, pages 1330–1338. Curran Associates, Inc.
Nilsson, M., van Laere, J., Ziemke, T., and Edlund, J.
(2008). Extracting rules from expert operators to sup-
port situation awareness in maritime surveillance. In
2008 11
th
Int. Conf. on Information Fusion,pages 1–8.
Rodriguez Sullivan, M. D. and Shah, M. (2008). Visual
surveillance in maritime port facilities. volume 6978,
pages 697811–697811–8.
Socek, D., Culibrk, D., Marques, O., Kalva, H., and Furht,
B. (2005). A hybrid color-based foreground object de-
tection method for automated marine surveillance. In
Blanc-Talon, J., Philips, W., Popescu, D., and Scheun-
ders, P., editors, Advanced Concepts for Intelligent Vi-
sion Systems, number 3708 in Lecture Notes in Com-
puter Science, pages 340–347. Springer Berlin Hei-
delberg.
Szpak, Z. L. and Tapamo, J. R. (2011). Maritime surveil-
lance: Tracking ships inside a dynamic background
using a fast level-set. Expert Systems with Applica-
tions, 38(6):6669–6680.
Vandecasteele, A., Devillers, R., and Napoli, A. (2013). A
semi-supervised learning framework based on spatio-
temporal semantic events for maritime anomaly detec-
tion and behavior analysis. In Proceedings CoastGIS
2013 Conf.: Monitoring and Adapting to Change on
the Coast.
Voles, P. (1999). Target identification in a complex maritime
scene. volume 1999, pages 15–15. IEE.
Wijnhoven, R., van Rens, K., Jaspers, E., and de With, P.
(2010). Online learning for ship detection in maritime
surveillance. pages 73–80.
Yasri, I., Hamid, N., and Yap, V. (2008). Performance anal-
ysis of FPGA based sobel edge detection operator. In
Int. Conf. on Electronic Design, 2008. ICED 2008,
pages 1–4.
Zemmari, R., Daun, M., Feldmann, M., and Nickel, U.
(2013). Maritime surveillance with GSM passive
radar: Detection and tracking of small agile targets.
In Radar Symposium (IRS), 2013 14th Int., volume 1,
pages 245–251.
Zhu, X. (2003). Semi-supervised learning using gaussian
fields and harmonic functions. In Proceedings of the
20th Int. Conf. on Machine learning (ICML-2003),
volume 20, page 912.
Zivkovic, Z. (2004). Improved adaptive gaussian mixture
model for background subtraction. In Proceedings of
the 17th Int. Conf. on Pat. Rec., 2004. ICPR 2004, vol-
ume 2, pages 28–31 Vol.2.
VISAPP2015-InternationalConferenceonComputerVisionTheoryandApplications
594