tern Analysis and Machine Intelligence, IEEE Trans-
actions on, 27(10):1631–1643.
Cui, Y., Pagani, A., and Stricker, D. (2011). Robust point
matching in hdri through estimation of illumination
distribution. In Mester, R. and Felsberg, M., editors,
DAGM-Symposium, volume 6835 of Lecture Notes in
Computer Science, pages 226–235. Springer.
Dalal, N. and Triggs, B. (2005). Histograms of oriented gra-
dients for human detection. In Computer Vision and
Pattern Recognition, 2005. CVPR 2005. IEEE Com-
puter Society Conference on, volume 1, pages 886–
893. IEEE.
Debevec, P. E. and Malik, J. (1997). Recovering high dy-
namic range radiance maps from photographs. In Pro-
ceedings of the 24th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH
’97, pages 369–378, New York, NY, USA. ACM
Press/Addison-Wesley Publishing Co.
Doulamis, A., Doulamis, N., Ntalianis, K., and Kollias,
S. (2003). An efficient fully unsupervised video ob-
ject segmentation scheme using an adaptive neural-
network classifier architecture. Neural Networks,
IEEE Transactions on, 14(3):616–630.
Doulamis, N. (2010). Iterative motion estimation con-
strained by time and shape for detecting persons’ falls.
In Proceedings of the 3rd International Conference on
PErvasive Technologies Related to Assistive Environ-
ments, page 62. ACM.
Drago, F., Myszkowski, K., Annen, T., and Chiba, N.
(2003). Adaptive logarithmic mapping for display-
ing high contrast scenes. Computer Graphics Forum,
22:419–426.
Durand, F. and Dorsey, J. (2002). Fast bilateral filtering
for the display of high-dynamic-range images. ACM
Trans. Graph., 21(3):257–266.
Fattal, R., Agrawala, M., and Rusinkiewicz, S. (2007). Mul-
tiscale shape and detail enhancement from multi-light
image collections. ACM Transactions on Graphics
(Proc. SIGGRAPH), 26(3).
Grabner, H., Leistner, C., and Bischof, H. (2008).
Semi-supervised on-line boosting for robust track-
ing. In Computer Vision–ECCV 2008, pages 234–247.
Springer.
Harris, C. and Stephens, M. (1988). A combined corner and
edge detector. In Alvey vision conference, volume 15,
page 50. Manchester, UK.
Henriques, J. F., Caseiro, R., and Batista, J. (2011). Glob-
ally optimal solution to multi-object tracking with
merged measurements. In Computer Vision (ICCV),
2011 IEEE International Conference on, pages 2470–
2477. IEEE.
Huang, C., Wu, B., and Nevatia, R. (2008). Robust ob-
ject tracking by hierarchical association of detection
responses. In Computer Vision–ECCV 2008, pages
788–801. Springer.
Jiang, Z., Huynh, D. Q., Moran, W., Challa, S., and Spadac-
cini, N. (2010). Multiple pedestrian tracking using
colour and motion models. In Digital Image Com-
puting: Techniques and Applications (DICTA), 2010
International Conference on, pages 328–334. IEEE.
Kaaniche, M. B. and Bremond, F. (2009). Tracking hog de-
scriptors for gesture recognition. In Advanced Video
and Signal Based Surveillance, 2009. AVSS’09. Sixth
IEEE International Conference on, pages 140–145.
IEEE.
Kokkinos, M., Doulamis, N. D., and Doulamis, A. D.
(2013). Local geometrically enriched mixtures for sta-
ble and robust human tracking in detecting falls. Int J
Adv Robotic Sy, 10(72).
Kosmopoulos, D. I., Doulamis, N. D., and Voulodimos,
A. S. (2012). Bayesian filter based behavior recog-
nition in workflows allowing for user feedback. Com-
puter Vision and Image Understanding, 116(3):422–
434.
Ladas, N., Chrysanthou, Y., and Loscos, C. Improv-
ing tracking accuracy using illumination neutraliza-
tion and high dynamic range imaging.
Lepetit, V., Lagger, P., and Fua, P. (2005). Randomized
trees for real-time keypoint recognition. In Computer
Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, volume 2,
pages 775–781. IEEE.
Liu, C., Yuen, J., and Torralba, A. (2011). Sift flow:
Dense correspondence across scenes and its appli-
cations. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 33(5):978–994.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International journal of computer
vision, 60(2):91–110.
Lucas, B. D., Kanade, T., et al. (1981). An iterative image
registration technique with an application to stereo vi-
sion. In IJCAI, volume 81, pages 674–679.
Mantiuk, R., Myszkowski, K., and Seidel, H.-P. (2006). A
perceptual framework for contrast processing of high
dynamic range images. ACM Trans. Appl. Percept.,
3(3):286–308.
Matthews, I., Ishikawa, T., and Baker, S. (2004). The tem-
plate update problem. IEEE transactions on pattern
analysis and machine intelligence, 26(6):810–815.
Miao, Q., Wang, G., Shi, C., Lin, X., and Ruan, Z. (2011).
A new framework for on-line object tracking based on
surf. Pattern Recognition Letters, 32(13):1564–1571.
Reinhard, E., Stark, M., Shirley, P., and Ferwerda, J. (2002).
Photographic tone reproduction for digital images. In
ACM Transactions on Graphics (TOG), volume 21,
pages 267–276. ACM.
Reinhard, E., Ward, G., Pattanaik, S., and Debevec, P.
(2005). High Dynamic Range Imaging: Acquisi-
tion, Display, and Image-Based Lighting (The Mor-
gan Kaufmann Series in Computer Graphics). Mor-
gan Kaufmann Publishers Inc., San Francisco, CA,
USA.
Robertson, M. A., Borman, S., and Stevenson, R. L. (1999).
Dynamic range improvement through multiple expo-
sures. In In Proc. of the Int. Conf. on Image Processing
(ICIP99, pages 159–163. IEEE.
Rosten, E. and Drummond, T. (2006). Machine learning
for high-speed corner detection. In Computer Vision–
ECCV 2006, pages 430–443. Springer.
HDRImagingforEnchancingPeopleDetectionandTrackinginIndoorEnvironments
629