A 4D Virtual/Augmented Reality Viewer Exploiting Unstructured Web-based Image Data

Anastasios Doulamis, Nikolaos Doulamis, Konstantinos Makantasis, Michael Klein

2015

Abstract

Outdoor large-scale cultural sites are mostly sensitive to environmental, natural and human made factors, implying an imminent need for a spatio-temporal assessment to identify regions of potential cultural interest (material degradation, structuring, conservation). Thus, 4D modelling (3D plus the time) is ideally required for preservation and assessment of outdoor large scale cultural sites, which is currently implemented as a simple aggregation of 3D digital models at different time. However, it is difficult to implement temporal 3D modelling for many time instances using conventional capturing tools since we need high financial effort and computational complexity in acquiring a set of the most suitable image data. One way to address this, is to exploit the huge amount of images distributing over visual hosting repositories, such as flickr and picasa. These visual data, nevertheless, are loosely structured and thus no appropriate for 3D modelling. For this reason, a new content-based filtering mechanism should be implemented so as to rank (filter) images according to their contribution to the 3D reconstruction process and discards image outliers that can either confuse or delay the 3D reconstruction process. Then, we proceed to the implementation of a virtual/augmented reality which allows the cultural heritage actors to temporally assess cultural objects of interest and assists conservators to check how restoration methods affect an object or how materials decay through time. The proposed system has been developed and evaluated using real-life data and outdoor sites.

References

  1. Arampatzis, A., Zagoris, K., and Chatzichristofis, S. A., 2013. Dynamic two-stage image retrieval from large multimedia databases. In. Process. Manag., vol. 49, no. 1, pp. 274-285.
  2. Bach, F. R., and Jordan, M. I., 2003. Learning Spectral Clustering. Computer Science Division, University of California at Berkeley, Berkeley, California.
  3. Cayton, L, 2006. Algorithms for manifold learning. University of California, San Diego, Tech. Rep. CS2008-0923.
  4. Chum, O., Philbin, J., Sivic, J., Isard, M., and Zisserman, A., 2007. Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval. In IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007, pp. 1-8.
  5. Cox, T., Cox, M., 2000. Multidimensional Scaling. Chapman & Hall/CRC, Second Edition.
  6. Daras, P., Axenopoulos, A., Litos, G., 2012. Investigating the Effects of Multiple Factors towards more Accurate 3D Object Retrieval. IEEE Transactions on Multimedia, Vol. 14, No. 2, Page(s): 374 - 388.
  7. Doulamis, A., Ioannides, M., Doulamis, N., Hadjiprocopis, A., Fritsch, D., Balet, O., Julien, M., Protopapadakis, E., Makantasis, K., Weinlinger, G., S.Johnsons, P., Klein, M., Fellner, D., Stork, A., Santos, P. 2013. 4D reconstruction of the past. Proceedings of SPIE - The International Society for Optical Engineering, 8795, art. no. 87950.
  8. Fan, K., 1951. Maximum Properties and Inequalities for the Eigenvalues of Completely Continuous Operators. Proc. Natl. Acad. Sci. U. S. A., vol. 37, no. 11, pp. 760-766.
  9. Hadjiprocopis, A., Ioannides, M., Wenzel, K., Rothermel, M., Johnsons, P.S., Fritsch, D., Doulamis, A., Protopapadakis, E., Kyriakaki, G., Makantasis, K., Weinlinger, G., Klein, M., Fellner, D., Stork, A., Santos, P. 4D reconstruction of the past: The image retrieval and 3D model construction pipeline. 2014 (2014) Proceedings of SPIE - The International Society for Optical Engineering, 9229, art. no. 922916, .
  10. Kekre, D. H. B., Sarode, T. K., Thepade S. D., and Vaishali V., 2010. Improved texture feature based image retrieval using Kekre's fast codebook generation algorithm. In Int. Conference on Contours of Computing Technology, Thinkquest2010, S. J. Pise, Ed. pp. 143-149.
  11. Kyriakaki, G., Doulamis, A., Doulamis, N., Ioannides, M., Makantasis, K., Protopapadakis, E., Hadjiprocopis, A., Wenzel, K., Fritsch, D., Klein, M., Weinlinger, G., 2014. 4D Reconstruction of Tangible Cultural Heritage Objects from Web-Retrieved Images. International Journal of Cultural Heritage in Digital Era.
  12. Lv, Q., Josephson, W., Wang, Z., Charikar, M., and Li., K., 2007. Multi-probe LSH: Efficient Indexing for High-dimensional Similarity Search. In Proceedings of the 33rd International Confe-rence on Very Large Data Bases, Vienna, Austria, pp. 950-961.
  13. Makantasis, K., Doulamis, A., Doulamis, N., Ioannides, M., 2014. In the wild image retrieval and clustering for 3D cultural heritage landmarks reconstruction. Multimedia tools and Applications, Springer Press.
  14. Min, R, and Cheng, H. D., 2009. Effective image retrieval using dominant color descriptor and fuzzy support vector machine. Pattern Recognit., vol. 42, no. 1, pp. 147-157.
  15. Murthy, V. S., Kumar, S., and Rao P. S., 2010. Content Based Image Retrieval using Hierarchical and KMeans Clustering Techniques. Int. J. Eng. Sci. Technol., vol. 2.
  16. Papadopoulos, S. Zigkolis, K., Kompatsiaris Y.,, and Vakali, A., 2010. Cluster-based Landmark and Event Detection on Tagged Photo Collections. IEEE Multimedia.
  17. Protopapadakis, E., Doulamis, A., Matsatsinis, N. Semisupervised image meta-filtering in cultural heritage applications. 2014. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8740, pp. 102-110.
  18. Rublee, E., Rabaud, V., Konolige, K., and Bradski, G., 2011. ORB: An efficient alternative to SIFT or SURF. In IEEE International Conference on Computer Vision (ICCV), pp. 2564-2571.
  19. Smeets, D., Fabry, T., Hermans, J., Vandermeulen, D., and Suetens, P., 2009. Isometric deformation modelling for object recognition. In Proc.CAIP'09, 2009, pp. 757-765.
Download


Paper Citation


in Harvard Style

Doulamis A., Doulamis N., Makantasis K. and Klein M. (2015). A 4D Virtual/Augmented Reality Viewer Exploiting Unstructured Web-based Image Data . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: MMS-ER3D, (VISIGRAPP 2015) ISBN 978-989-758-090-1, pages 631-639. DOI: 10.5220/0005456806310639


in Bibtex Style

@conference{mms-er3d15,
author={Anastasios Doulamis and Nikolaos Doulamis and Konstantinos Makantasis and Michael Klein},
title={A 4D Virtual/Augmented Reality Viewer Exploiting Unstructured Web-based Image Data},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: MMS-ER3D, (VISIGRAPP 2015)},
year={2015},
pages={631-639},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005456806310639},
isbn={978-989-758-090-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: MMS-ER3D, (VISIGRAPP 2015)
TI - A 4D Virtual/Augmented Reality Viewer Exploiting Unstructured Web-based Image Data
SN - 978-989-758-090-1
AU - Doulamis A.
AU - Doulamis N.
AU - Makantasis K.
AU - Klein M.
PY - 2015
SP - 631
EP - 639
DO - 10.5220/0005456806310639