ACKNOWLEDGEMENTS
This work was supported by the Spanish
Government through the CICYT projects
(TRA2013-48314-C3-1-R) and (TRA2011-29454-
C03-02.
REFERENCES
Debattisti, S, Mazzei, L & Panciroli, M 2013. Automated
extrinsic laser and camera inter-calibration using
triangular targets. Intelligent Vehicles Symposium
(IV), 2013 IEEE, 2013, pp. 696–701.
Cortes, C & Vapnik, V 1995, Support vector network,
Machine Learning, vol. 20, pp. 1-25.
Fremont, V & Bonnifait, P 2008. Extrinsic calibration
between a multi-layer lidar and a camera. 2008 IEEE
Int. Conf. Multisens. Fusion Integr. Intell. Syst., 2008.
García, F, Jiménez, F, Naranjo, JE, Zato, JG, Aparicio, F,
Armingol, JM & de la Escalera, A. 2012. Environment
perception based on LIDAR sensors for real road
applications.
García, F, García, J, Ponz, A, de la Escalera, A &
Armingol, JM 2014. Context Aided Pedestrian
Detection for Danger Estimation Based on Laser and
Computer Vision. Expert Systems with Applications,
Vol: 41 (15), pp.6646-6661.
Kaempchen, N, Buehler, M & Dietmayer, K 2005.
Feature-level fusion for free-form object tracking
using laserscanner and video. IEEE Proceedings
Intelligent Vehicles Symposium 2005, pp. 453–458,
2005.
Kwak, K, Huber, DF, Badino, H & Kanade, T. 2011
.Extrinsic calibration of a single line scanning lidar
and a camera. IEEE/RSJ Int. Conf. Intell. Robot.
Syst., pp. 3283–3289, 2011.
Li, Y, Ruichek, Y & Cappelle, D 2011. 3D triangulation
based extrinsic calibration between a stereo vision
system and a LIDAR. 14th Int. IEEE Conf. Intell.
Transp. Syst., pp. 797–802, 2011.
Li, Y, Liu, Y, Dong, L, Cai, X 2007. An algorithm for
extrinsic parameters calibration of a camera and a
laser range finder using line features, IEEE/RSJ Int.
Conf. Intell. Robot. Syst.
Lisca, G, Jeong, PJP & Nedevschi, S 2010. Automatic one
step extrinsic calibration of a multi layer laser relative
to a stereo camera. Intell. Comput. Commun. Process.
(ICCP), 2010 IEEE Int. Conf., 2010.
Martín, D, García, F, Musleh, B, Olmeda, D, Marín, P,
Ponz, A, Rodríguez, CH, Al-Kaff, A, de la Escalera, A
& Armingol, JM 2014. IVVI 2.0: An intelligent
vehicle based on computational perception. Expert
Systems with Applications 41.
Premebida, C, Ludwig, O & Nunes, U 2009. LIDAR and
Vision-Based Pedestrian Detection System. Journal of
Field Robotics, vol. 26, no. Iv, pp. 696–711, 2009.
Premebida, C, Ludwig, O, Silva, M & Nunes, U 2010. A
Cascade Classifier applied in Pedestrian Detection
using Laser and Image-based Features.
Transportation, pp. 1153–1159, 2010.
Rodríguez-Garavito, CH, Ponz, A, García, F, Martín, D,
de la Escalera, A & Armingol, JM 2014. Automatic
Laser and Camera Extrinsic Calibration for Data
Fusion Using Road Plane.
Spinello, L & Siegwart, R, 2008. Human detection using
multimodal and multidimensional features. IEEE
International Conference on Robotics and Automation,
3264-3269. DOI: 10.1109/ROBOT.2009.4543708.
WHO, 2009. Global status report on road safety. Time for
action. WHO library cataloguing-in-publication data,
World Health Organization 2009, ISBN 978-9-
241563-84-0, Geneva, Switzerland.
VEHITS2015-InternationalConferenceonVehicleTechnologyandIntelligentTransportSystems
24