Chan T. F., Shen J., 2005, Image processing and analysis:
Variational, PDE, Wavelet, and stochastic methods,
SIAM.
Chambolle A., 2009, ‘An introduction to total variation for
image analysis’, Theoretical foundations and numeri-
cal methods for sparse recovery, vol. 9, pp. 263-340.
Chen K., 2013, ‘Introduction to variational image pro-
cessing models and application’, International journal
of computer mathematics, vol. 90, no. 1, pp. 1-8.
Getreuer P., 2012, ‘Rudin-Osher-Fatemi total variation
denoising using split Bregman’. IPOL 2012,
‘http://www.ipol.im/pub/art/2012/g-tvd/’.
Gill P. E., Murray W., 1974, Numerical methods for con-
strained optimization, Academic Press Inc.
Immerker J., 1996, ‘Fast noise variance estimation’, Com-
puter vision and image understanding, vol. 64, no.2,
pp. 300-302.
Jezierska A., 2012, ‘Poisson-Gaussian noise parameter
estimation in fluorescence microscopy imaging’, IEEE
International Symposium on Biomedical Imaging 9
th
,
pp. 1663-1666.
Jezierska A., 2011, ‘An EM approach for Poisson-
Gaussian noise modelling’, EUSIPCO 19
th
, vol. 62, is.
1, pp. 13-30.
Le T., Chartrand R., Asaki T. J., 2007, ‘A variational
approach to reconstructing images corrupted by Pois-
son noise’, Journal of mathematical imaging and vi-
sion, vol. 27, is. 3, pp. 257-263.
Li F., Shen C., Pi L., 2006, ‘A new diffusion-based varia-
tional model for image denoising and segmentation’,
Journal mathematical imaging and vision, vol. 26, is.
1-2, pp. 115-125.
Luisier F., Blu T., Unser M., 2011, ‘Image denoising in
mixed Poisson-Gaussian noise’, IEEE transaction on
Image processing, vol. 20, no. 3, pp. 696-708.
Lysaker M., Tai X., 2006, ‘Iterative image restoration
combining total variation minimization and a second-
order functional’, International journal of computer
vision, vol. 66, pp. 5-18.
Nick V., 2009, Getty images,
‘http://well.blogs.nytimes.com/2009/09/16/what-sort-
of-exercise-can-make-you-smarter/’.
Rankovic N., Tuba M., 2012, ‘Improved adaptive median
filter for denoising ultrasound images’, Advances in
computer science, WSEAS ECC’12, pp. 169-174.
Rubinov A., Yang X., 2003, Applied Optimization: La-
grange-type functions in constrained non-convex op-
timization, Springer.
Rudin L. I., Osher S., Fatemi E., 1992, ‘Nonlinear total
variation based noise removal algorithms’, Physica D.
vol. 60, pp. 259-268.
Scherzer O., 2009, Variational methods in Imaging,
Springer.
Thomos N., Boulgouris N. V., Strintzis M. G., 2006,
‘Optimized Transmission of JPEG2000 streams over
Wireless channels’, IEEE transactions on image pro-
cessing, vol. 15, no.1, pp .54-67.
Tran M. P., Peteri R., Bergounioux M., 2012, ‘Denoising
3D medical images using a second order variational
model and wavelet shrinkage’, Image analysis and
recognition, vol. 7325, pp. 138-145.
Wang C., Li T., 2012, ‘An improved adaptive median
filter for Image denoising’, ICCEE, vol. 53, no. 2.64,
pp. 393-398.
Wang Z., 2004, ‘Image quality assessment: From error
visibility to structural similarity’, IEEE transaction on
Image processing, vol. 13, no. 4, pp. 600-612.
Wang Z., Bovik A. C., 2006, Modern image quality as-
sessment, Morgan & Claypool Publisher.
Xu J., Feng X., Hao Y., 2014, ‘A coupled variational
model for image denoising using a duality strategy and
split Bregman’, Multidimensional systems and signal
processing, vol. 25, pp. 83-94.
Zhu Y., 2012, ‘Noise reduction with low dose CT data
based on a modified ROF model’, Optics express, vol.
20, no. 16, pp. 17987-18004.
Zeidler E., 1985, Nonlinear functional analysis and its
applications: Variational methods and optimization,
Springer.
AVariationalMethodtoRemovetheCombinationofPoissonandGaussianNoises
45