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Abstract: One-, two- and three-dimensional fast Fourier transform (FFT) algorithms has been widely used in digital 
processing. Multi-dimensional discrete Fourier transform is reduced to a combination of one-dimensional 
FFT for all coordinates due to the increased complexity and the large amount of computation by increasing 
the dimensional of the signal. This article provides a general Cooley-Tukey algorithm analog, which 
requires less complex operations of additional and multiplication than the standard method, and runs 1.5 
times faster than analogue in Matlab. 

1 INTRODUCTION 

One-, two- and three-dimensional fast Fourier 
transform (FFT) algorithms has been widely used in 
digital processing (Dudgeon, 1983, Blahut, 1985). 
Multi-dimensional discrete Fourier transform is 
reduced to a combination of one-dimensional FFT 
for all coordinates due to the increased complexity 
and the large amount of computation by increasing 
the dimensional of the signal. This article provides a 
general Cooley-Tukey algorithm analog, which 
requires less complex operations of additional and 
multiplication than the standard method 
(Tutatchikov, 2013). Testing of the resulting 
algorithm in two- and three-dimensions in 
comparison with the standard algorithm in Matlab 
(Gonzalez, 2009). 

2 THE ALGORITHM 
DESCRIPTION 

Let us have a look at the signal f , which is an n-

dimensional periodic signal with a period s2  of 
over all n coordinate with values in a complex space. 

The counts are given as  nxx xxff
n

,...,1,...,1
 , 

where nixi ,...,1,   take values 12,...,1,0 s . 

The discrete Fourier transformation (DFT) 

 nyy yyFF
n

,...,1,...,1
  for the signal 

 nxxf ,...,1  is given in the formula: 
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where niyi ,...,1,   take values 12,...,0 s . 

2.1 n-Dimensional FFT 

Transform the formula (1) as follows:  
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where coordinates 1
iy  of the final counts subsignals 

1
,...,1 naag  run 12 s  values, 12:0 11  s

ix , 
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ni :1 , 1F  -  FFT of source signal f . For 

convenience, denote fF 0 : 
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Continue the same procedure for each 
1

,...,1 naag , that 

is represented signal 
1

,...,1 naag  as a sum subsignals: 
 





2

,...,
1

,..., 11 nn
gg aa  (4)

 

where coordinates of the final counts subsignals 
2

,...,1 n
g   run 22 s  values. 

Continuing this process, we can be represented 

 nyyF ,...,1
1  as the sum of DFT signals, wherein 

each of the n coordinates counts runs on only two 
values, we obtain the following formula for 

calculating  n
v yyF ,...,1 : 
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(5)

where sv :1  - step number of the partition 

 nxxF ,...,1  on the subsignals. 

Consider in more detail the formula (5): 
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(6)

 

where 12:0,  vsv
i

v
i yx , ni :1 , 

   nn
s yyFyyF ,...,,..., 11   - discrete Fourier 

transformation f . 

2.2 Parallel Algorithm FFT 

Calculation  nyyF ,...,1  can be parallelized on 

independent flows calculations. In the presence 

sqq 0,2  of flow formula (6) takes the form: 
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Consider in more detail the formula (7): 
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Subsignals 
v

aa n
g ,...,1

 may be described as follows: 
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3 THE OBTAINED RESULTS  

For the algorithm testing program in the 
programming language C++ has been written for 

two- and three-dimensional signal. The testing was 
conducted on PC with following characteristics: 

Processor: AMD FX-4170 4.2 GHz; 
RAM: 8 GB; 
Operating system: Windows 7. 
Was compared with a standard algorithm for the 

discrete Fourier transform in the environment of 
Matlab 7.5.0 (R2007b) in two- and three-
dimensional case. Test results are shown in seconds 
in tables. 

Table 1 shows a comparison runtime in seconds 
of the two-dimensional FFT by analogue Cooley-
Tookey algorithm and a standard algorithm for 
computing two-dimensional FFT in Matlab.  

Table 2 shows a comparison runtime in seconds 
of the three-dimensional FFT by analogue Cooley-
Tookey algorithm and a standard algorithm for 
computing three-dimensional FFT in Matlab.  

Table 3 shows a comparison runtime in seconds 
of the parallel version two-dimensional FFT by 
analogue Cooley-Tookey algorithm and parallel 
standard algorithm for computing two-dimensional 
FFT by combination one-dimensional FFT.  

Table 1: Calculating 2D FFT. 

Size signal 
2D FFT 
Matlab 

2D FFT 
Cooley-
Tukey 

algorithm 
analog 

Speedup 
С++ 

128*128 0.001 0.001 ~1 
256*256 0.005 0.004 ~1 
512*512 0.027 0.017 ~1.6 

1024*1024 0.125 0.087 ~1.4 
2048*2048 0.620 0.389 ~1.6 
4096*4096 2.634 1.637 ~1.6 
8192*8192 13.609 6.904 ~2 

16384*16384 - 20.383  

Table 2: Calculating 3D FFT. 

Size signal 
3D FFT 
Matlab 

3D FFT 
Cooley-
Tukey 

algorithm 
analog 

Speedup 
С++ 

32*32*32 0.002 0.002 ~1.0 
64*64*64 0.028 0.020 ~1.4 

128*128*128 0.282 0.188 ~1.5 
256*256*256 2.546 1.660 ~1.5 
512*512*512 - 14.736  
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Table 3: Parallel calculating 2D FFT. 

Size signal 

Numb
er of 

proces
ses 

Combinati
on 1D FFT 

2D FFT 
Cooley-
Tukey 

algorith
m analog 

Speedu
p 

Cooley-
Tukey 

1024*1024 

1 0.112 0.057 ~1.6 
2 0.142 0.070 ~1.0 
4 0.154 0.099 ~0.8 
8 0.257 0.092 ~0.7 
16 0.330 0.088 ~0.5 

2048*2048 

1 0.516 0.275 ~1.7 
2 0.512 0.396 ~1.2 
4 0.596 0.407 ~1.1 
8 1.045 0.345 ~0.9 
16 1.195 0.453 ~0.8 

4096*4096 

1 2.193 1.355 ~1.7 
2 2.399 1.194 ~1.4 
4 2.393 2.098 ~1.2 
8 4.412 1.946 ~1.1 
16 3.946 1.912 ~1.1 

8192*8192 

1 12.538 4.957 ~1.7 
2 10.509 5.245 ~1.4 
4 11.753 7.848 ~1.2 
8 18.551 8.162 ~1.1 
16 18.196 8.907 ~1.2 

 

 

Figure 1: Example of two-dimensional signal. 

4 CONCLUSIONS 

The modified algorithm of the n-dimensional fast 
Fourier transform by analogue of the Cooley-Tukey 

algorithm requires NN n
n

n

2log
2

12 
 complex 

operations of multiplications and  NnN n
2log  

additions , where sN 2  is number of counts in 
the one of the coordinates (Starovoitov, 2010). 

Standard algorithm requires NnN n
2log  complex 

multiplications and NnN n
2log  complex 

additions. The modified algorithm requires less 
complex than the standard method, and runs 1.5 
times faster than analogue in Matlab. 
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