
Table 3: Parallel calculating 2D FFT. 
Size signal 
Numb
er of 
proces
ses 
Combinati
on 1D FFT 
2D FFT 
Cooley-
Tukey 
algorith
m analog 
Speedu
p 
Cooley-
Tukey 
1024*1024 
1 0.112 0.057 ~1.6 
2 0.142 0.070 ~1.0 
4 0.154 0.099 ~0.8 
8 0.257 0.092 ~0.7 
16 0.330 0.088 ~0.5 
2048*2048 
1 0.516 0.275 ~1.7 
2 0.512 0.396 ~1.2 
4 0.596 0.407 ~1.1 
8 1.045 0.345 ~0.9 
16 1.195 0.453 ~0.8 
4096*4096 
1 2.193 1.355 ~1.7 
2 2.399 1.194 ~1.4 
4 2.393 2.098 ~1.2 
8 4.412 1.946 ~1.1 
16 3.946 1.912 ~1.1 
8192*8192 
1 12.538 4.957 ~1.7 
2 10.509 5.245 ~1.4 
4 11.753 7.848 ~1.2 
8 18.551 8.162 ~1.1 
16 18.196 8.907 ~1.2 
 
 
Figure 1: Example of two-dimensional signal. 
4 CONCLUSIONS 
The modified algorithm of the n-dimensional fast 
Fourier transform by analogue of the Cooley-Tukey 
algorithm requires 
NN
n
n
n
2
log
2
12 
 complex 
operations of multiplications and  
NnN
n
2
log  
additions , where 
s
N 2
 is number of counts in 
the one of the coordinates (Starovoitov, 2010). 
Standard algorithm requires 
NnN
n
2
log  complex 
multiplications and 
NnN
n
2
log  complex 
additions. The modified algorithm requires less 
complex than the standard method, and runs 1.5 
times faster than analogue in Matlab. 
ACKNOWLEDGEMENTS 
Work performed under the state order of the 
Ministry of Education and Science if the Russian 
Federation in the Siberian Federal University to 
perform R&D in 2014 (Task No 1.1462.2014/K). 
Project title: “Algebraic and analytic methods for 
creating algorithms for solving differential and 
polynomial systems: factorization, resolution of 
singularities and the optimal lattice” 
REFERENCES 
Dudgeon, D. E. and Mersereau, R. M., 1983. 
Multidimensional Digital Signal Processing, Prentice 
Hall. 
Blahut, R. E., 1985. Fast Algorithms for Digital Signal 
Processing, Addison-Wesley Press. 
Tutatchikov V. S., Kiselev O. I., Noskov M. V., 2013. 
“Calculating the n-Dimensional Fast Fourier 
Transform”, Pattern Recognition and Image Analysis, 
vol. 23, no. 3, pp. 429-433. 
Gonzalez, R. C., Woods, R. E., Eddins, S. L., 2009. 
Digital Image Processing Using MATLAB, Gatesmark 
Publishing. Knoxville.  
Starovoitov, A. V., 2010. “On multidimensional analog of 
Cooley-Tukey algorithm”, Reporter Siberian State 
Aerospace University named after academician 
M.F.Reshetnev, no. 1 (27), pp. 69-73. 
ParallelVersionn-DimensionalFastFourierTransformAlgorithm-AnalogoftheCooley-TukeyAlgorithm
117