Table 3: Parallel calculating 2D FFT.
Size signal
Numb
er of
proces
ses
Combinati
on 1D FFT
2D FFT
Cooley-
Tukey
algorith
m analog
Speedu
p
Cooley-
Tukey
1024*1024
1 0.112 0.057 ~1.6
2 0.142 0.070 ~1.0
4 0.154 0.099 ~0.8
8 0.257 0.092 ~0.7
16 0.330 0.088 ~0.5
2048*2048
1 0.516 0.275 ~1.7
2 0.512 0.396 ~1.2
4 0.596 0.407 ~1.1
8 1.045 0.345 ~0.9
16 1.195 0.453 ~0.8
4096*4096
1 2.193 1.355 ~1.7
2 2.399 1.194 ~1.4
4 2.393 2.098 ~1.2
8 4.412 1.946 ~1.1
16 3.946 1.912 ~1.1
8192*8192
1 12.538 4.957 ~1.7
2 10.509 5.245 ~1.4
4 11.753 7.848 ~1.2
8 18.551 8.162 ~1.1
16 18.196 8.907 ~1.2
Figure 1: Example of two-dimensional signal.
4 CONCLUSIONS
The modified algorithm of the n-dimensional fast
Fourier transform by analogue of the Cooley-Tukey
algorithm requires
NN
n
n
n
2
log
2
12
complex
operations of multiplications and
NnN
n
2
log
additions , where
s
N 2
is number of counts in
the one of the coordinates (Starovoitov, 2010).
Standard algorithm requires
NnN
n
2
log complex
multiplications and
NnN
n
2
log complex
additions. The modified algorithm requires less
complex than the standard method, and runs 1.5
times faster than analogue in Matlab.
ACKNOWLEDGEMENTS
Work performed under the state order of the
Ministry of Education and Science if the Russian
Federation in the Siberian Federal University to
perform R&D in 2014 (Task No 1.1462.2014/K).
Project title: “Algebraic and analytic methods for
creating algorithms for solving differential and
polynomial systems: factorization, resolution of
singularities and the optimal lattice”
REFERENCES
Dudgeon, D. E. and Mersereau, R. M., 1983.
Multidimensional Digital Signal Processing, Prentice
Hall.
Blahut, R. E., 1985. Fast Algorithms for Digital Signal
Processing, Addison-Wesley Press.
Tutatchikov V. S., Kiselev O. I., Noskov M. V., 2013.
“Calculating the n-Dimensional Fast Fourier
Transform”, Pattern Recognition and Image Analysis,
vol. 23, no. 3, pp. 429-433.
Gonzalez, R. C., Woods, R. E., Eddins, S. L., 2009.
Digital Image Processing Using MATLAB, Gatesmark
Publishing. Knoxville.
Starovoitov, A. V., 2010. “On multidimensional analog of
Cooley-Tukey algorithm”, Reporter Siberian State
Aerospace University named after academician
M.F.Reshetnev, no. 1 (27), pp. 69-73.
ParallelVersionn-DimensionalFastFourierTransformAlgorithm-AnalogoftheCooley-TukeyAlgorithm
117