Human Pose Estimation in Video via MCMC Sampling
Evgeny Shalnov, Anton Konushin
2015
Abstract
We describe a method for the human pose estimation in a video sequence. We propose a new mathematical model of a human pose in a video sequence, which incorporates motion and pose parameters. We show that the model of (Park and Ramanan, 2011) is a particular case of our model. We introduce a framework to infer an approximation of the optimal value in the proposed model. We use an exact algorithm of motion parameters estimation to reduce complexity of inference. Our approach outperforms results of (Park and Ramanan, 2011) in the most complicated video sequences.
References
- Ferrari, V., Marin-Jimenez, M., and Zisserman, A. (2008). Progressive search space reduction for human pose estimation. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1-8. IEEE.
- Ghiasi, G., Yang, Y., Ramanan, D., and Fowlkes, C. C. (2014). Parsing occluded people. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 2401-2408. IEEE.
- Girshick, R., Iandola, F., Darrell, T., and Malik, J. (2014). Deformable Part Models are Convolutional Neural Networks.
- Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., and Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the ACM International Conference on Multimedia, pages 675-678. ACM.
- Marr, D. and Nishihara, H. K. (1978). Representation and recognition of the spatial organization of three-dimensional shapes. Proceedings of the Royal Society of London. Series B. Biological Sciences, 200(1140):269-294.
- Park, D. and Ramanan, D. (2011). N-best maximal decoders for part models. Computer Vision (ICCV), 2011 IEEE . . . .
- Rauch, H. E., Striebel, C., and Tung, F. (1965). Maximum likelihood estimates of linear dynamic systems. AIAA journal, 3(8):1445-1450.
- Sapp, B., Weiss, D., and Taskar, B. (2011). Parsing human motion with stretchable models. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1281-1288. IEEE.
- Shalnov, E. and Konushin, A. (2013). Improvement of mcmc-based video tracking algorithm. In Pattern rcognition and image analysis (PRIA-11-2013), pages 727-730.
- Toshev, A. and Szegedy, C. (2013). Deeppose: Human pose estimation via deep neural networks. arXiv preprint arXiv:1312.4659.
- Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. Information Theory, IEEE Transactions on, 13(2):260-269.
- Yang, Y. and Ramanan, D. (2011). Articulated pose estimation with flexible mixtures-of-parts resenting shape. 2011 IEEE Conference on Computer Vision and Pattern Recognition, pages 1385-1392.
Paper Citation
in Harvard Style
Shalnov E. and Konushin A. (2015). Human Pose Estimation in Video via MCMC Sampling . In Proceedings of the 5th International Workshop on Image Mining. Theory and Applications - Volume 1: IMTA-5, (VISIGRAPP 2015) ISBN 978-989-758-094-9, pages 71-79. DOI: 10.5220/0005462000710079
in Bibtex Style
@conference{imta-515,
author={Evgeny Shalnov and Anton Konushin},
title={Human Pose Estimation in Video via MCMC Sampling},
booktitle={Proceedings of the 5th International Workshop on Image Mining. Theory and Applications - Volume 1: IMTA-5, (VISIGRAPP 2015)},
year={2015},
pages={71-79},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005462000710079},
isbn={978-989-758-094-9},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 5th International Workshop on Image Mining. Theory and Applications - Volume 1: IMTA-5, (VISIGRAPP 2015)
TI - Human Pose Estimation in Video via MCMC Sampling
SN - 978-989-758-094-9
AU - Shalnov E.
AU - Konushin A.
PY - 2015
SP - 71
EP - 79
DO - 10.5220/0005462000710079