visual metaphors or create new ones according to
their need.
VisMinerTD still has few metrics and
visualizations ready to be used. As future works, we
intend to create a larger set of metrics and views for
the TD domain. Another important activity is to plan
and perform empirical studies to evaluate the
developed views. In addition, we will improve the
documentation of the project and create a set of
automated unit tests for the main features.
We believe that this tool is an important
contribution for the TD area because it brings a new
perspective to the challenging work of to identifying
and monitoring TD on software projects. Besides,
VisMinerTD can also be easily adapted and
customized by researchers and practitioners to
address their specific needs.
ACKNOWLEDGEMENTS
This work was partially supported by CNPq
Universal 2014 grant 458261/2014-9. The authors
would like to thank the students Felipe Gomes and
Heron Sanches that is helping us with the
development of VisMinerTD.
REFERENCES
Alves, N. S. R., Ribeiro, L. F., Caires, V.; Mendes, T. S.,
Spínola, R.O., 2014. Towards an Ontology of Terms
on Technical Debt. In Sixth International Workshop
on Managing Technical Debt, Victoria, British
Columbia. Canada. DOI: 10.1109/MTD.2014.9.
Chen, C., 2004. Information Visualization - Beyond the
Horizon, 2
nd
edition. Springer Verlag, Berlin,
Heidelberg, New York.
D3.js, 2015. Available in http://d3js.org.
Diehl S., 2007. Software Visualization: Visualizing the
Structure, Behaviour, and Evolution of Software.
Springer-Verlag, New York, Inc.
Fjeldstad, R., Hamlen, W., 1983. Application program
maintenance: Report to our respondents. Tutorial on
Software Maintenance, Parikh, G. & Zvegintzov, N.
(Eds.). IEEE Computer Soc. Press., pp. 13–27.
Guo, Y., Spínola, R.O., Seaman, C., 2014. Exploring the
costs of technical debt management - a case study.
Empirical Software Engineering Journal, v.1, p.1 - 24.
DOI:10.1007/s10664-014-9351-7.
Google Chart Tools, 2015. Available in
https://developers.google.com/chart.
High Charts, 2015. Available in
http://www.highcharts.com.
Izurieta, C.; Vetro, A.; Zazworka, N.; Cai, Y.; Seaman, C.
& Shull, F. 2012, Organizing the technical debt
landscape, In Third International Workshop on
Managing Technical Debt, pp. 23-26.
JGit, 2015. Available in http://www.jgit.org/.
Kohsuke, 2015.Available in http://github-api.kohsuke.org.
Kruchten, P., Nord, R. L., Ozkaya, I., 2012. Technical
Debt: From Metaphor to Theory and Practice, In IEEE
Software, Published by the IEEE Computer Society.
Lehman, M. M., Belady, L. A., 1985. Eds., Program
evolution: processes of software change. Academic
Press Professional, Inc.
Lientz, P., Swanson, E.B., Tompkins, G.E., 1978.
Characteristics of Application Software Maintenance.
Communications of the ACM, vol. 21, p. 6.
Novais, R., Nunes, C., Lima, C., Cirilo, E., Dantas, F.,
Garcia, A.; Mendonca, M., 2012. On the proactive and
interactive visualization for feature evolution
comprehension: An industrial investigation, In 34th
International Conference on Software Engineering
(ICSE), pp.1044,1053.
Novais, R. L., Torres, A., Mendes T. S., Mendonca, M.
Zazworka, N., 2013. Software evolution visualization:
A systematic mapping study. IST, 55(11):1860 – 1883.
Novais, R. L., Nunes, C., Garcia, A., Mendonca, M.,
2013b. SourceMiner Evolution: A Tool for Supporting
Feature Evolution Comprehension, In 29th IEEE
International Conference on Software Maintenance
(ICSM), pp.508,511, 22-28.
Parnas, D. L., 1994. Software Aging. In 16th International
Conference on Software Engineering, Sorrento, Italy.
Seaman, C., Guo, Y., 2011. Measuring and Monitoring
Technical Debt. Advances in Computers 82, pp. 25-46.
Spínola, R. O., Zazworka, N., Vetro, A., Seaman, C.,
Shull, F., 2013. Investigating Technical Debt Folklore.
In Fourth International Workshop on Managing
Technical Debt, San Francisco. DOI:
10.1109/MTD.2013.6608671.
Storey, M. D., Čubrani
ć, D., German, D. M., 2005. On the
use of visualization to support awareness of human
activities in software development: a survey and a
framework. In ACM Symposium on Software
Visualization. ACM, New York, pp. 193-202.
VisMiner Site, 2015. Available in
http://visminer.wordpress.com.
VisMiner Wiki, 2015. Available in
http://github.com/visminer/Visminer/wiki/Installation.
VisMinerTD GIT repository, 2015. Available in
https://github.com/visminer/.
Zazworka, N., Spínola, R. O., Vetró, A., Shull, F.,
Seaman, C., 2013. A Case Study on Effectively
Identifying Technical Debt. In 17th International
Conference on Evaluation and Assessment in Software
Engineering, Porto de Galinhas. DOI:
10.1145/2460999.2461005.
ICEIS2015-17thInternationalConferenceonEnterpriseInformationSystems
462