systems. Software Engineering, IEEE Transactions
on, 25(1):91–121.
Dit, B., Revelle, M., Gethers, M., and Poshyvanyk, D.
(2013). Feature location in source code: a taxonomy
and survey. Journal of Software: Evolution and Pro-
cess, 25(1):53–95.
Ducasse, S. and Pollet, D. (2009). Software architecture re-
construction: A process-oriented taxonomy. Software
Engineering, IEEE Transactions on, 35(4):573–591.
Erkan, G. and Radev, D. R. (2004). Lexrank: Graph-based
lexical centrality as salience in text summarization. J.
Artif. Intell. Res.(JAIR), 22(1):457–479.
Gu´eh´eneuc, Y.-G. (2004). A reverse engineering tool for
precise class diagrams. In Proceedings of the 2004
Conference of the Centre for Advanced Studies on
Collaborative Research, CASCON ’04, pages 28–41.
IBM Press.
Inoue, K., Yokomori, R., Yamamoto, T., Matsushita, M.,
and Kusumoto, S. (2005). Ranking significance of
software components based on use relations. Software
Engineering, IEEE Transactions on, 31(3):213–225.
Mihalcea, R. and Tarau, P. (2004). Textrank: Bringing order
into texts. In Lin, D. and Wu, D., editors, Proceedings
of EMNLP 2004, pages 404–411, Barcelona, Spain.
Association for Computational Linguistics.
Neate, B., Irwin, W., and Churcher, N. (2006). Coderank: a
new family of software metrics. In Software Engineer-
ing Conference, 2006. Australian, pages 10 pp.–378.
Osman, M. H., Chaudron, M. R. V., and Putten, P. v. d.
(2013). An analysis of machine learning algorithms
for condensing reverse engineered class diagrams. In
Proceedings of the 2013 IEEE International Confer-
ence on Software Maintenance, ICSM ’13, pages 140–
149, Washington, DC, USA. IEEE Computer Society.
Page, L., Brin, S., Motwani, R., and Winograd, T. (1999).
The pagerank citation ranking: Bringing order to the
web. Technical Report 1999-66, Stanford InfoLab.
Previous number = SIDL-WP-1999-0120.
Sora, I. (2013). Unified modeling of static relationships be-
tween program elements. In Maciaszek, L. and Filipe,
J., editors, Evaluation of Novel Approaches to Soft-
ware Engineering, volume 410 of Communications
in Computer and Information Science, pages 95–109.
Springer Berlin Heidelberg.
Sora, I., Glodean, G., and Gligor, M. (2010). Soft-
ware architecture reconstruction: An approach based
on combining graph clustering and partitioning. In
Computational Cybernetics and Technical Informatics
(ICCC-CONTI), 2010 International Joint Conference
on, pages 259–264.
Steidl, D., Hummel, B., and Juergens, E. (2012). Using net-
work analysis for recommendation of central software
classes. In Reverse Engineering (WCRE), 2012 19th
Working Conference on, pages 93–102.
Thung, F., Lo, D., Osman, M. H., and Chaudron, M.
R. V. (2014). Condensing class diagrams by analyz-
ing design and network metrics using optimistic clas-
sification. In Proceedings of the 22Nd International
Conference on Program Comprehension, ICPC 2014,
pages 110–121, New York, NY, USA. ACM.
Zaidman, A., Calders, T., Demeyer, S., and Paredaens, J.
(2005). Applying webmining techniques to execution
traces to support the program comprehension process.
In Software Maintenance and Reengineering, 2005.
CSMR 2005. Ninth European Conference on, pages
134–142.
Zaidman, A. and Demeyer, S. (2008). Automatic identifica-
tion of key classes in a software system using webmin-
ing techniques. Journal of Software Maintenance and
Evolution: Research and Practice, 20(6):387–417.
Zaidman, A., Du Bois, B., and Demeyer, S. (2006). How
webmining and coupling metrics improve early pro-
gram comprehension. In Program Comprehension,
2006. ICPC 2006. 14th IEEE International Confer-
ence on, pages 74–78.
ENASE2015-10thInternationalConferenceonEvaluationofNovelSoftwareApproachestoSoftwareEngineering
140