provements: The tool should allow users to assign
scores to each of the data sources because there is a
consensus between participants that credibility may
vary according to the data source. The tool also could
save different scenarios’s settings, allowing users to
retrieve their preferences.
ACKNOWLEDGEMENTS
This Work is partially supported by the Brazilian
Funding Agencies FAPEMIG, CAPES and CNPq.
REFERENCES
Abrahams, B., McGrath, G. M., and Dai, W. (2004). A
multi-agent approach for dynamic ontology loading
to support semantic web applications. In Zhang, D.,
Grgoire, r., and DeGroot, D., editors, IRI, pages 570–
575. IEEE Systems, Man, and Cybernetics Society.
Allemang, D. (2010). Semantic web and the linked data
enterprise. In Wood, D., editor, Linking Enterprise
Data, pages 3–23. Springer US.
Berners-Lee, T. (2009). Linked data. http://
www.w3.org/DesignIssues/LinkedData.html. Ac-
cessed: 2014-03-10.
Bouthillier, F. and Shearer, K. (2003). Assessing Competi-
tive Intelligence Software: A Guide to Evaluating CI
Technology. Information Today.
Chen, H., Chau, M., and Zeng, D. (2002). {CI} spider: a
tool for competitive intelligence on the web. Decision
Support Systems, 34(1):1 – 17.
Chen, H. and Wu, Z. (2003). On case-based knowledge
sharing in semantic web. In ICTAI, pages 200–207.
IEEE Computer Society.
Chen, T., Zhang, Y., Zhang, S., Chen, C., and Chen, H.
(2012). Building semantic information search plat-
form with extended sesame framework. In Proceed-
ings of the 8th International Conference on Seman-
tic Systems, I-SEMANTICS ’12, pages 193–196, New
York, NY, USA. ACM.
Cronin, B., Overfelt, K., Fouchereaux, K., Manzvanzvike,
T., Cha, M., and Sona, E. (1994). The internet and
competitive intelligence: A survey of current prac-
tice. International Journal of Information Manage-
ment, 14(3):204 – 222.
Cyganiak, R. (2012). Accessing relational databases as vir-
tual rdf graphs. http://www.d2rq.org. Accessed: 2014-
10-01.
Eisenberg, V. and Kanza, Y. (2011). Ruby on semantic web.
In Abiteboul, S., Bhm, K., Koch, C., and Tan, K.-L.,
editors, ICDE, pages 1324–1327. IEEE Computer So-
ciety.
Feridun, M. and Tanner, A. (2010). Using linked data
for systems management. In NOMS, pages 926–929.
IEEE.
Ferrara, E., Meo, P. D., Fiumara, G., and Baumgartner, R.
(2012). Web data extraction, applications and tech-
niques: A survey. CoRR, abs/1207.0246.
Gelb, B. D., Saxton, M. J., Zinkhan, G. M., and Albers,
N. D. (1991). Competitive intelligence: Insights from
executives. Business Horizons, 34(1):43 – 47.
Hu, B. and Svensson, G. (2010). A case study of linked en-
terprise data. In Patel-Schneider, P. F., Pan, Y., Hitzler,
P., Mika, P., 0007, L. Z., Pan, J. Z., Horrocks, I., and
Glimm, B., editors, International Semantic Web Con-
ference (2), volume 6497 of Lecture Notes in Com-
puter Science, pages 129–144. Springer.
Hyland, S., Haugen, A. S., and yvind Thomassen (2014).
Perceptions of time spent on safety tasks in surgi-
cal operations: A focus group study. Safety Science,
70(0):70 – 79.
Khan, A. and Hussain, M. (2009). Application of seman-
tic web in e-business and telecommunication. In Ad-
vanced Computer Control, 2009. ICACC ’09. Interna-
tional Conference on, pages 513–517.
Kitchenham, B. A. (2004). Procedures for undertaking
systematic reviews. http://www.inf.ufsc.br/ awan-
genh/kitchenham.pdf. Accessed: 2013-09-01.
Li, W. (2002). Intelligent information agent with ontol-
ogy on the semantic web. In Intelligent Control
and Automation, 2002. Proceedings of the 4th World
Congress on, volume 2, pages 1501–1504 vol.2.
Lindstr
¨
om, A., Johnson, P., Johansson, E., Ekstedt, M., and
Simonsson, M. (2006). A survey on cio concerns-do
enterprise architecture frameworks support them? In-
formation Systems Frontiers, 8(2):81–90.
Mi, J., Chen, H., Lu, B., Yu, T., and Pan, G. (2009). Deriv-
ing similarity graphs from open linked data on seman-
tic web. In IRI, pages 157–162. IEEE Systems, Man,
and Cybernetics Society.
Moresi, E. (2006). Memoria Organizacional e Gestao do
Conhecimento. In Tarapanoff, K., editor, Inteligencia,
Informacao e Conhecimento, pages 277–301. IBICT.
Nettleton, D. (2014). Chapter 3 - incorporating various
sources of data and information. In Nettleton, D., edi-
tor, Commercial Data Mining, pages 17 – 47. Morgan
Kaufmann, Boston.
Niles, C. and Jeremijenko, N. (2001). Collated path: A one-
dimensional interface element to promote user ori-
entation and sense-making activities in the semantic
web. In IV, pages 555–562. IEEE Computer Society.
PAN, J. (2009). Resource description framework. In Staab,
S. and Studer, R., editors, Handbook on Ontologies.
Springer, second edition.
Passant, A., Laublet, P., Breslin, J. G., and Decker, S.
(2009). Semslates: Improving enterprise 2.0 infor-
mation systems using semantic web technologies. In
CollaborateCom, pages 1–10. IEEE.
Tarapanoff, K. (2006). Informacao, Conhecimento e In-
teligencia em Corporacoes: relacoes e complemen-
taridade. In Tarapanoff, K., editor, Inteligencia, In-
formacao e Conhecimento, pages 19–36. IBICT.
Xu, J., Zhu, Q., Li, J.-Z., Zhang, P., and Wang, K. (2004).
Modeling and implementation of unified semantic
web platform. In Web Intelligence, pages 603–606.
IEEE Computer Society.
Yang, Y., Akers, L., Klose, T., and Barcelonyang, C.
(2008). Text mining and visualization tools Impres-
sions of emerging capabilities. World Patent Informa-
tion, 30(4):280–293.
SupportingCompetitiveIntelligencewithLinkedEnterpriseData
415