
The Algorithm of Transformation from UML Sequence Diagrams to
the Topological Functioning Model

Viktoria Ovchinnikova and Erika Asnina
Department of Applied Computer Science, Riga Technical University, Meza Street 1 k-3, Riga, Latvia

Keywords: Topological Functioning Model, Reverse Engineering, Model-driven Architecture.

Abstract: It is difficult and time-consuming to migrate a legacy system to some new platform or integrate it with other
software system manually. High-level abstract models (domain models) of the existing software system
must be got for further merging with new domain models. TFM4MDA (Topological Functioning Modeling
for Model Driven Architecture) is an approach for software development from the high level of abstraction
to the lower levels. The formal TFM (Topological Functioning Model) for software system analysis can be
obtained stepwise from the low levels using RE (Reverse Engineering) techniques. The algorithm for
transformation from UML sequence diagrams to the TFM is suggested in this research. It is based on the
previous research results. Additional information about other approaches such as MDRE (Model-Driven
Reverse Engineering) and ADM (Architecture Driven Modernization) is overviewed in order to use it for
further analysis and full formalization of the transformation considered in our work.

1 INTRODUCTION

TFM4MDA (Topological Functioning Modeling for
Model Driven Architecture) is an approach for
software system development. It uses all models
from MDA (Model Driven Architecture):

- CIM (Computation Independent Model) that
is represented by the TFM (Topological
Functioning Model);

- PIM/PSM (Platform Independent Model /
Platform Specific Model) that should be
represented by UML (Unified Modeling
Language) diagrams, where UML class
diagrams represent the structure of the
software system and UML sequence diagrams
– the behavior;

- ISM (Implementation Specific Model) – it is
a source code.

In our case, RE (Reverse Engineering) is needed
for software system analysis and examination, e.g.,
when we need to migrate a legacy system to other
platform or integrate it with other software systems.
RE gives an opportunity to get the structure and
behavior of the software system by representing
source code at the higher level of abstraction – in
our case at the level of UML diagrams. The initial
results about legacy system integration or migration
within TFM4MDA are presented in (Ovchinnikova

and Asnina, 2014a). They have been applied for
choosing the tool and transforming code. Thus,
eight tools were overviewed by five criteria in
(Ovchinnikova and Asnina, 2014a) for defining
their functions and availability. The main criteria
are supported RE techniques, programming
languages, and UML diagrams. In (Ovchinnikova
and Asnina, 2014b) four tools have been selected
from those eight and overviewed more deeply using
the UML specification and available information
about these tools. As well as some tools that lacked
complete information have been installed and
checked manually for getting necessary data. It was
necessary to check which elements of the UML
class and sequence diagrams exist in and are
supported by these tools. The transformational
mappings from the manually created UML
sequence diagrams to the TFM are discussed in
(Ovchinnikova, et al., 2014).

In this paper, the algorithm of transformation
from UML sequence diagrams to the TFM is
suggested. It states the main steps, which will be
needed for creating the QVT (Query / View /
Transformation) transformation as well as for
necessary changes in the existing metamodel of the
TFM in the future research. Additionally, related
work with other approaches in the field is
overviewed. The purpose of those approaches is

377Ovchinnikova V. and Asnina E..
The Algorithm of Transformation from UML Sequence Diagrams to the Topological Functioning Model.
DOI: 10.5220/0005476603770384
In Proceedings of the 10th International Conference on Evaluation of Novel Approaches to Software Engineering (MDI4SE-2015), pages 377-384
ISBN: 978-989-758-100-7
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

similar, i.e. getting the domain model from code.
The paper is structured as follows. Section 2

represents information about the TFM4MDA in
brief. Section 3 describes and shows the
transformation algorithm from the UML sequence
diagram to the TFM. Section 4 represents related
work and Section 5 provides conclusions.

2 TFM4MDA IN BRIEF

As previously mentioned, the TFM4MDA uses all
four MDA models: CIM, PIM/PSM and ISM for
software development, analysis and modeling. The
CIM can contain the following three main parts
(Asnina and Osis, 2011c): Business requirements
for the software system, Business Model, and
Knowledge Model.

In the TFM4MDA the Business Model with
Business requirements describe a solution domain
and the Business Model with the Knowledge Model
describe a problem domain. The TFM serves as this
Business Model and maps the solution domain to
the problem domain.

The conformity between models in MDA,
TFM4MDA and reverse TFM4MDA is presented in
(Ovchinnikova and Asnina, 2014b), where the
solution domain is shown as the TFM of the system
“TO BE” and the problem domain is shown as the
TFM of the system “AS IS”. The conformity
between the problem domain and the solution
domain is supported by continuous mappings
between these two TFMs.

Figure 1 illustrates the RE within TFM4MDA
(or reverse TFM4MDA). The TFM of the system
“AS IS” fully include the knowledge about
functionality of the legacy software system, but the
TFM of the system “TO BE“ may include it
partially or fully. From the legacy software code we
can got the PIM/PSM with the structure and the
behavior of this system. The platform specific
structural diagram of the software system can be
represented by the UML class diagram and the
platform specific object interaction diagram can be
provided by the UML sequence diagram. From
these UML diagrams the TFM of the legacy
software system can be obtained by using
transformation mapping rules among the constructs
of the UML diagrams and the TFM.

The TFM contains and represents knowledge
about the dynamic and static parts of the software
system. Using RE, the UML class diagram is
needed for providing the structure of the software
system and the UML sequence is necessary for

ensuring the behavior of the software system.

Figure 1: Reverse engineering within TFM4MDA.

The TFM can be characterized by two kinds of
properties: functioning and topological. The
functioning and topological properties allow
modeling functional characteristics (features) of the
business system. One functional feature represents
one business process, activity or task execution.
According to (Osis and Asnina, 2011a) the
functioning properties are inputs and outputs, cycle
structure and cause-and-effect relations. The
topological properties are neighborhoods,
connectedness, continuous mapping and closure
(Osis and Asnina, 2011a).

The TFM is represented as a topological space
(X, Q), where X is a finite closed set of functional
features with topology Q on set X. The topology Q
is represented in the form of the directed graph.
Examples of the TFM are provided in (Osis and
Asnina, 2011). A cause-and-effect relationship
between two functional features of the system exists
if the execution or calling of one functional feature
is caused by the second functional feature and there
are no another functional feature between them, as
it is discussed in (Osis and Asnina, 2011b).

The functional features contain information of
the system in the form of a unique 11-tuple <Id
(identifier), A (object’s action), R (result of the
object’s action), O (object), PrCond (preconditions),
PostCond (post-conditions), Pr (providers), Ex
(executers), Req (requirements), Cl (class), Op
(operation)>. It is described in detail in (Donins,
2012) and (Osis and Asnina, 2011b).

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

378

The stepwise process of obtaining the TFM
from system verbal descriptions is described in
(Osis, et al., 2008). Another example of its
construction is provided in (Asnina and Osis, 2010)
with a focus on continuous mappings between
solution and problem domains. According to
(Donins, et al., 2011) the PIM can be represented as
a topological UML class diagram with all elements
taken from the TFM.

3 THE TRANSFORMATION
ALGORITHM

The IDM toolset, which implements the IDM
(Integrated Domain Modeling) approach and
supports automatic creation of the TFM from the
business use case descriptions, is implemented and
described in (Shile and Osis, 2014). The
transformation implemented in the tool works at the
CIM level.

The manual transformations to the UML class,
sequence, use case, object and activity diagrams
from the TFM are discussed and provided in (Osis,
et al., 2007), (Osis and Asnina, 2011d), (Donins,
2012). Uldis Donins (Donins, 2012) described
mappings between constructs of the TFM and
constructs of all TopUML (Topological UML)
diagrams. The TopUML modeling is an extension
of UML that helps in tracing the cause-and-effect
relations between the solution and problem domains
clearly.

In our case, we consider a reverse
transformation, i.e. from PIM/PSM to the CIM.
Donins’ method can be only partially used for
reverse transformation, i.e. for obtaining the TFM
from the UML class (for structure of the software
system) and sequence diagrams (for behavior of the
system). The reason is that not all information can
be kept and represented similarly at all levels of
abstraction.

The mappings among TFM and UML sequence
diagram elements and manual transformation from
the UML sequence diagram to the TFM are
described and provided in (Ovchinnikova, et al.,
2014). As well as the example of this
transformation is provided. The semantic
differences and similarities between constructs of
the UML sequence diagrams and the TFM are
overviewed and analyzed in more detail in
(Ovchinnikova, et al., 2014).

For automating this process, the transformation
from the UML sequence diagram to the TFM can be
done using QVT transformations. The schematic

algorithm for this transformation is provided in this
research.

The UML sequence diagram consists of the
following elements (OMG, 2011):

- Outside actor – it is not a part of a software
system;

- Lifeline – it is an active role (object), which
interact with other roles;

- Message – an action send from one lifeline to
other;

- Frame (fragment) – it can cover a part of the
sequence diagram, which can be performed as
a cycle or under some condition.

Figure 2 represents the transformation process,
where a new XMI (XML (Extensible Markup
Language) Metadata Interchange) output file is
generated from all XMI input files:

- An XMI input file contains information about
the UML sequence diagram, where it is
known from which lifeline a message is sent
and which lifeline receives it, as well as the
information about frames;

- An XMI output file contains information
about the TFM, i.e., a set of functional
features and a set of topological relationships
among functional features. As well all
functional features have 11-tuple with
information about themselves. However, it is
not necessary to fill all 11 elements.

Figure 3 represents the next flowchart part
(Part2) of the transformation algorithm. It takes
each message from the first to the last one and
checks whether this message is included in the
frame or not. If it is included in the frame, then
Part3 of the algorithm will be executed. Otherwise
if is not included, then Part4 of the algorithm will
be executed.

Figure 4 represents flowchart Part3, where the
frame’s name is taken for understanding whether
there are conditions or loops. In this case we look at
four more usable frames: alt (alternative), opt
(option), par (parallel) and loop. In (Ovchinnikova,
et al., 2014) the table with frame types of the UML
sequence diagram is presented. The message will be
executed only after the execution of the
precondition for frames alt and opt.

The frame loop can be represented as a cycle in
the TFM, there is no precondition before the
message will be executed. The messages will be
also executed without preconditions in the frame
par, because all these messages will be done
simultaneously. If frame’s name is not par or loop
then Part4 of this algorithm will be executed,
otherwise the precondition will be set in the

The�Algorithm�of�Transformation�from�UML�Sequence�Diagrams�to�the�Topological�Functioning�Model

379

functional feature as one parameter (i.e.,
precondition PrCond) in the 11-tuple. Similarly, if
another frame is included in the existing frame, then
we handle it the same.

Figure 2: The transformation process from the UML
sequence diagram to the TFM.

Figure 3: The second part of algorithm.

Figure 5 represents the flowchart Part4, where the
message’s name and the destination lifeline are
taken for setting the functional features information.
The chain of message invocations provides
topological connection between cause and effect
functional features. The destination of the message
can be set as the object in the functional feature, as
well as the message name can be set as object’s
action with some result of this action. When all
information will be received, Part 4 of the algorithm

finishes its work.

Figure 4: The third part of algorithm.

As the example the part of the UML sequence
diagram are taken from (Ovchinnikova, et al., 2014)
for providing the work of this algorithm. Figure 6
illustrates this example. After this algorithm
realizing the following corteges are obtained:

- <1(Id), deleteBoard(A), null(R), Board(O),
null(PrCond), null(PostCond), null(Pr),
null(Ex), nul(Req), Board(Cl),
deleteBoard():boolean(Op)> from the
message deleteBoard();

- <2(Id), deleteSquare(A), null(R), Square(O),
null(PrCond), null(PostCond), null(Pr),
null(Ex), nul(Req), Square(Cl),
deleteSquare():boolean(Op)> from the
message deleteSquare() and this functional
feature is invoked by the functional feature
with id = 1;

- <3(Id), deleteDisc(A), null(R), Disc(O), If
square is not empty(PrCond), null(PostCond),
null(Pr), null(Ex), nul(Req), Disc(Cl),
deleteDisc():boolean(Op)> from the message

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

380

deleteDisc() and this functional feature is
invoked by the functional feature with id = 2.

Figure 5: The fourth part of algorithm.

Figure 6: The example of the UML sequence diagram.

As well as the following two cause-and-effect
relations are obtained: 1) the cause is the functional
feature with id=1 and the effect is the functional
feature with id=2; 2) the cause is the functional
feature with id=2 and the effect is the functional
feature with id=3.

This example shows that the semantic
inconsistence exists between the functional feature
of the loop and the UML sequence diagram frame
loop. The functional feature loses information that
all available squares must be deleted on the board.
In case of composing the TFM from the textual
description, the functional feature’s name would
indicate this information.

4 RELATED WORK

4.1 Model-driven Reverse Engineering

MDRE (Model-driven Reverse Engineering) can
resolve such managerial problems as prediction of
how many time need to be spend on the reverse
engineering and the evaluation of the reverse
engineering quality (Rugaber and Stirewalt, 2004).

MDRE uses two types of models, namely a
program model and an application domain model
Rugaber and Stirewalt, 2004). The program model
provides the computed values of software system
functions in a higher abstraction level than in the
source code. The application domain model
indicates domain concepts with their relationships
and meanings, which are independent from the
software system. These two types of models must
have connections with each other.

As authors in Rugaber and Stirewalt, 2004)
means, it is important to have the similar outputs
from reversing reverse engineering. They defined
two criteria, namely lucidity and thoroughness, for
evaluation of the reversing reverse engineering.
Results of the generated software system are similar
to the original software system in case of lucidity.
Domain concepts are connected to all the software
system constructs in case of thoroughness.

MDRE can be applied using UML improvement
tools, such as all UML diagrams and OCL (Object
Constraint Language). It helps to create the more
correct and full software system. The detailed
example of MDRE is illustrated in (Rugaber and
Stirewalt, 2004).

Authors in (Weijun, et al., 2009) also use
MDRE and describe generation of OWL (Ontology
Web Language) descriptions from UML models
and WSDL (Web Services Descriptions Language)
files.

The use of RE techniques, namely static and
dynamic analysis, is suggested in (Favre, 2008) for
generation of PSMs and PIMs from source code.
Analysis of conformity of these transformations
needs to be defined by formal specifications and
metamodels. The hypothesis is that all information
required by the software system can be taken from
the source code. The PSMs and PIMs can be
expressed by using UML and OCL. The OCL
defines transformation between a source and a
target metamodels in MOF (Meta Object Facility)
terms. QVT (Query, View, Transformation)
specification for metamodels transformation is
presented as OCL contracts with names, a set of
parameters, preconditions (assert relationships

The�Algorithm�of�Transformation�from�UML�Sequence�Diagrams�to�the�Topological�Functioning�Model

381

between metaclasses, which belong to the source
metamodel) and postconditions (after the
transformation do something with the state of the
models).

The transformation from the UML/OCL to the
NEREUS language is described in (Favre, 2008).
NEREUS language (Favre, 2005) is needed for
certain expression of parts of the UML metamodels.
All these transformations are described in detail in
(Favre, 2008) and (Favre, et al., 2009). As well the
detailed information of reverse engineering and
MDA transformations are provided in (Favre, 2010)
and (Favre, 2012).

4.2 Architecture Driven
Modernization

ADM TF (Architecture Driven Modernization Task
Force) has the following goals (Newcomb and
Mansurov, 2005): successful modernization of
existing software systems, revival of existing
software systems and taking the existing software
system more agile. According to (Newcomb and
Mansurov, 2005) ADM creates modernized
software systems from legacy systems using model
transformations. ADM standards roadmap is:

- KDM (Knowledge Discovery Meta-Model) –
it is an initial metamodel that shows the
behavior, structure and data of the software
system. As well it represents the software
system above the procedural level that is why
it can be used by multiple languages. It is a
model of the semantic graph model;

- ASTM (Abstract Syntax Tree Meta-Model) –
it is built upon the KDM and needed for
representing the software system below the
procedural level. It is a model of the syntax
tree model;

- Pattern Recognition – it is needed for
examination of the structure of metadata for
getting anti-patterns and patterns if the
existing software system. They can be used
for definition of the transformation
opportunities and requirements;

- SMM (Structured Metrics Package) – it is
needed for getting metrics from the KDM,
which transmit architectural, technical and
functional problems for the data;

- Visualization – views of models in the form
of graphs, charts or others realizations;

- Refactoring – improving, modularizing the
existing software system, as well as getting
the model-driven views of the software;

- Transformation – it defines mappings

between the ASTM or the KDM and the
target metamodel.

Author in (Khusidman, 2008) describes the
ADM horseshoe, which consists of the following
processes:

- Formal Transformation – getting the KDM
from the source code;

- Abstraction Level Transformation – creating
business rules, processes and vocabulary in
SBVR (Semantic of Business Vocabulary and
Rules) and BPMN (Business Process Model
and Notation) from the KDM;

- Enhancement Transformation – upgrading
BPMN and SBVR by adding business
requirements;

- Abstraction Level Transformation –
designing UML diagrams;

- Formal Transformation – generating the
target code from the UML diagrams.

Authors in (Sadovykh, et al., 2009) provide
methodology for migration of existing software
system in C++ to the new software system in Java.
They show transformation requirements (their case
study is associated with all layers of MDA and
ADM), analyze C++ and Java source code, as well
as show differences and similarities of these
programming languages. Additionally, they give
information about testing the process of getting the
legacy system for understanding where and what
needs to be added or changed.

4.3 Knowledge Discovery Meta-model

The tutorial about KDM structure is available in
(Mansurov, 2005). It can help in getting necessary
knowledge from the KDM needed for creation of
business models. The created business model needs
to be understandable and improvable, as well there
need to be a possibility to transform, modernize and
maintain it. According to (Vasilecas and
Normantas, 2011) the KDM can represent four
layers of abstractions:

- Abstraction layer – it represents structure,
build and conceptuality of the existing
software system;

- Runtime resource layer - it represents the user
interface, events, as well behavior of the
existing software system;

- Program element layer – it represents the
software system elements and their
relationships;

- KDM infrastructure layer – it represents
source files, configuration files and other files
of the existing software system.

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

382

As well authors in (Vasilecas and Normantas,
2011) describe the main process of business rules
derivation from the KDM. They use the GUIDE
Business Rules Project (Group, 2001)
formalizations for identifying the business rules.
Four business rule categories are defined in these
formalizations: business terms, facts, constraints
and derivations in these formalizations. As well
three steps need to be done for derivation the
complete business rules. The first two are the
derivation of terms and facts, and the third is the
detection of structural derivations and assertions.
After all these steps the system analysts have to
check and analyze all obtained information.

In (Normantas and Vasilecas, 2012) authors
represent their approach for business rule detection
in the existing software system. They demonstrate
three phases of this approach: preliminary study,
knowledge extraction, and business logic
abstraction. Each of these phases has additional
steps for getting the necessary information. As well
they represent their own example with obtained
results that illustrates these phases.

Authors in (Perez-Castillo, et al., 2010) use
QVT transformations for getting the BPMN models
from the KDM model.

5 CONCLUSIONS

Modeling and analysis of the software system is the
main part of the software system development. It is
necessary for not losing the important functions,
parameters and logic of the software system.

The transformation algorithm is suggested in
this research. Certainly, it is necessary to check the
algorithm in practice in order to validate its
correctness and possibility to be implemented in
code. As well some application information can be
lost during transformation, such as parameters
sending with messages. Maybe, the 11-tuple needs
to be replenished for not losing such information.

If the message frames will be used in the UML
sequence diagrams, additional check of logic needs
to be provided, because TFM functional features are
to be connected correspondingly the order of
message invocations. As well the check of the
connectedness of all created parts of TFM needs to
be provided. For this task, the union operation can
be used. Thus, all repeated elements will be deleted,
except the original one, with which all connections
from all other parts of the TFM will be set.

The information about others approaches also
has been considered in the related work. This

information will be used in further work for refining
our approach. For example, the KDM can be
considered as an alternative to UML diagrams.

The future research direction is related to
analysis and possible modification of the TFM
metamodel. It is needed for the transformation from
the UML sequence diagrams to the TFM using
QVT that will implement the algorithm discussed in
this research. The current version of the TFM
metamodel is implemented in the IDM toolset that
is discussed in (Slihte and Osis, 2014). In order to
obtain the necessary TFM, the QVTo (QVT
Operational) transformation is planned to be
implemented in the future, using modified or
current version of the TFM metamodel. There is
high possibility that this TFM will not be complete,
because some information can be lost during
transformation. The reason is that RE tools may
work incorrectly.

Another point is that it is not clear what number
and types of UML diagrams will be sufficient for
generating a complete TFM. By now we assume
that a set of sequence diagrams is sufficient for this
task.

REFERENCES

Asnina, E. & Osis, J., 2010. Computation Independent
Models: Bridging Problem and Solution Domains. In:
Proceedings of the 2nd InternationalWorkshop on
Model-Driven Architecture and Modeling Theory-
Driven Development (MDA & MTDD 2010), in
conjunction with ENASE 2010. Lisbon: SciTePress,
pp. 23-32.

Asnina, E. & Osis, J., 2011c. Topological Functioning
Model as a CIM-Business Model. In: Model-Driven
Domain Analysis and Software Development:
Architectures and Functions. Hershey - New York:
IGI Global, pp. 40 - 64.

Donins, U., 2012. Topological Unified Modeling
Language: Development and Application. Ph.D.
Thesis., Riga: RTU.

Donins, U. et al., 2011. Towards the Refinement of
Topological Class Diagram as a Platform Independent
Model. In: Proceedings of the 3rd International
Workshop on Model-Driven Architecture and
Modeling-Driven Software Development (MDA &
MDSD 2011). Lisbon: SciTePress, pp. 79-88.

Favre, L., 2005. Foundations for MDA-based Forward
Engineering. Journal of Object Technology, 4(1), pp.
129-154.

Favre, L., 2008. Formalizing MDA-Based Reverse
Engineering Processes. Software Engineering
Research, Management and Application, pp. 153-160.

Favre, L., 2010. Reverse Engineering and MDA: An
Introduction. In: Model Driven Architecture for

The�Algorithm�of�Transformation�from�UML�Sequence�Diagrams�to�the�Topological�Functioning�Model

383

Reverse Engineering Technologies: Strategic
Directions and System Evolution. Hershey - New
York: IGI Global, pp. 1-14.

Favre, L., 2012. MDA-Based Reverse Engineering. In: D.
A. Telea, ed. Reverse Engineering - Recent Advances
and Applications. Rijieka: InTech.

Favre, L., Martinez, L. & Pereira, C., 2009. MDA-Based
Reverse Engineering of Object Oriented Code. In:
Enterprise, Business-Process and Information
Systems Modeling, LNBIP. Berlin: Springer Berlin
Heidelberg, pp. 251-263.

Group, B. R., 2001. Defining Business Rules - What Are
They Really?. [Online] Available at: http://www.busi
nessrulesgroup.org/first_paper/br01c0.htm [Accessed
27 January 2015].

Khusidman, V., 2008. ADM Transformation. [Online]
Available at: http://www.omg.org/adm/ADMTransfor
martionv4.pdf [Accessed 25 January 2015].

Mansurov, N., 2005. Knowledge Discovery Meta-model:
Tutorial. [Online] Available at: http://www.omg.org/
news/meetings/workshops/ADM_2005_Proceedings_
FINAL/T-2_Mansurov.pdf [Accessed 25 January
2015].

Newcomb, P. & Mansurov, N., 2005. Architecture-
Driven Modernization workshop. [Online] Available
at: http://www.omg.org/news/meetings/workshops/ad
m-2005.htm#tutorials [Accessed 25 January 2015].

Normantas, K. & Vasilecas, O., 2012. Extracting
Business Rules from Existing Enterprise Software
System. Berlin: Springer Berlin Heidelberg.

OMG, 2011. OMG Unified Modeling Language. Version
2.4.1. [Online] Available at: http://www.omg.org/spe
c/UML/2.4.1/ [Accessed 29 January 2015].

Osis, J. & Asnina, E., 2011a. Is Modeling a Treatment for
the Weakness of Software Engineering?. In: Model-
Driven Domain Analysis and Software Development:
Architectures and Functions. Hershey - New York:
IGI Global, pp. 1-14.

Osis, J. & Asnina, E., 2011b. Topological Modeling for
Model-Driven Domain Analysis and Software
Development: Functions and Architectures. In:
Model-Driven Domain Analysis and Software
Development: Architectures and Functions. Hershey -
New York: IGI Global, pp. 15-39.

Osis, J. & Asnina, E., 2011d. Derivation of Use Cases
from the Topological Computation Independent
Business Model. In: Model-Driven Domain Analysis
and Software Development: Architectures and
Functions. Hershey, USA: IGI Global, pp. 65 -89.

Osis, J. & Asnina, E., 2011. Model-Driven Domain
Analysis and Software Development: Architectures
and Functions. Hershey - New York: IGI Global.

Osis, J., Asnina, E. & Grave, A., 2007. MDA Oriented
Computation Independent Modeling of the Problem
Domain. In: Proceedings of the 2nd International
Conference on Evaluation of Novel Approaches to
Software Engineering (ENASE 2007). Barselona:
INSTICC Press, pp. 66-71.

Osis, J., Asnina, E. & Grave, A., 2008. Formal Problem
Domain Modeling within MDA. In: Software and

Data Technologies, Communications in Computer
and Information Science. Berlin: Springer-Verlag
Berlin Heidelberg, pp. 387-398.

Ovchinnikova, V. & Asnina, E., 2014a. Reverse
Engineering Tools for Getting a Domain Model
within TFM4MDA. In: Proceeding of the 11th
International Baltic Conference on Databases and
Information Systems Baltic DB&IS 2014. Tallinn:
Tallinn University of Technology Press, pp. 417-424.

Ovchinnikova, V. & Asnina, E., 2014b. Overview of
Software Tools for Obtaining UML Class Diagrams
and Sequence Diagrams from Source Code within
TFM4MDA. Baltic Journal of Modern Computing,
2(4), pp. 260 - 271.

Ovchinnikova, V., Asnina, E. & Garcia-Diaz, V., 2014.
Relationships between UML Sequence Diagrams and
the Topological Functioning Model for Backward
Transformation. Applied Computer Systems, Volume
16, pp. 43-52.

Perez-Castillo, R., Garcia-Rodriguez de Guzman, I. &
Piattini, M., 2010. Implementing Business Process
Recovery Patterns through QVT Transformations. In:
Theory and Practice of Model Transformations,
LNCS. Berlin: Springer Berlin Heidelberg, pp. 168-
183.

Rugaber, S. & Stirewalt, K., 2004. Model-Driven Reverse
Engineering. IEEE Software, 21(4), pp. 45-53.

Sadovykh, A. et al., 2009. Architecture Driven
Modernization in Practice – Study Results. In: 14th
IEEE International Conference on Engineering of
Complex Computer Systems. Potsdam: IEEE.

Slihte, A. & Osis, J., 2014. The Integrated Domain
Modeling: A Case Study. In: Databases and
Information Systems: Proceedings of the 11th
International Baltic Conference (DB&IS 2014),
Estonia, Tallinn, 8-11 June, 2014. Tallinn: Tallinn
University of Technology Press, pp. 465-470.

Vasilecas, O. & Normantas, K., 2011. Deriving Business
Rules from the Models of Existing Information
Systems. New York: ACM.

Weijun, S., Shixian, L., Defen, Z. & YuQing, Y., 2009. A
Model-Driven Reverse Engineering Approach for
Semantic Web Services Composition. Software
Engineering, Volume 3, pp. 101-105.

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

384

