
Let the maps R1 and R2 are services 
implemented by using the schema: 
R1(x1/type1,y1/type2;z1/type3,v1/type4); 
R2(x2/type1,y2/type2;z2/type3,v2/type4).  
Then the service defined by conditional 
composition will perform Rif mapping: 
Rif(x/type1,y/type2;z/type3,v/type4) == 
∃x1/type1∃y1/type2∃z1/type3∃v1/type4∃xin/type1∃
yin/type2 P(xin/type1,yin/type2) & 
R1(x1/type1,y1/type2;z1/type3,v1/type4) &x=x1 & 
y=y1 & z=z1 & v=v1 & x=xin & y=yin  
OR  
∃x2/type1∃y2/type2∃z2/type3∃v2/type4∃xin/typ
e1∃yin/type2 ¬P(xin/type1,yin/type2) & 
R2(x2/type1,y2/type2;z2/type3,v2/type4) & x=x2 & 
y=y2 & z=z2 & v=v2 & x=xin & y=yin 
The results of this analysis show that only two 
managing structures - serial and parallel are useful 
for automatic composition of processes. There must 
be a process that has an input fully identical to the 
input of the desired process. Other composition 
types are suggested to be used to solve the tasks of 
collision and invariation of proposed solutions. 
3  SEARCH FOR WEATHER 
CONDITIONS AT POINT OF 
AIRCRAFT ARRIVAL  
To describe processes we will use standard 
interpretation of the first-order logic language 
(Volchenkov N.G. et al., 2011). 
Let the first process return destination and arrival 
time by flight number: 
S1(x/numFlight,y/destFlight, z/arrTimeFlight) 
==  ∃i/Flight Flight_fnumber(i,x) & Flight_dest(i,y) 
& Flight_time(i,y) 
Second process returns latitude and longitude by 
city name: 
S2(x/location, y/latCoordinates, 
z/longCoordinates) = Location_coordinates(x,y,z) 
Third and fourth processes return weather 
conditions by latitude, longitude and time, but third 
process works only with Northen and South America 
(longitude from x  to y) and the fourth one works 
with Eurasia, Africa and Australia (longtitude): 
S3(x/latWeather,y/longWeather,z/Time,a/Weath
erInfo)==∃i/Precipitation  ∃j/Temperature 
Weather_coordinates(a,x,y) & Weather_time(a,z) & 
Weather_cond(a,i) & Weather_temp(a,j) & (y >= -
160) & (y <= -34) 
S4(x/latWeather,y/longWeather,z/Time,a/Weath
erInfo) == ∃i/Precipitation ∃j/Temperature  
Table 1: Conceptual model of knowledge domain. 
Classes 
Flight(x) 
WeatherInfo(x) 
Location(x) 
FlightNumber(x) → Digital(x) 
Temperature(x) → Digital(x) 
Precipitation(x) → String(x) 
Longitude(x) → float(x) 
Latitude(x) → float(x) 
Destination(x) → String(x) 
ArrivalTime(x) → TimeSpan(x) 
Time(x) → TimeSpan(x) 
Properties 
Flight_fnumber(x,y)  → Flight(x) & FlightNumber(y) : 
Flight_fnumber(x,y) & Flight_fnumber(x,z) → y = z 
Flight_dest(x,y)  → Flight(x) & Destination (y) : Flight_dest 
(x,y) & Flight_dest (x,z) → y = z 
Flight_time(x,y) → Flight(x) & ArrivalTime(y) : Flight_time 
(x,y) & Flight_time (x,z) → y = z 
Location_coordinates(x,y,z) → Location(x) & Longitude(y) & 
Latitude(z)  → Location_coordinates (x,y,z) & 
Location_coordinates (x,a,b) → y=a & z=b 
Weather_coordinates(x,y,z)  → WeatherInfo(x) & 
Longitude(y) & Latitude(z) → Weather_coordinates (x,y,z) & 
Weather_coordinates (x,a,b) → y=a & z=b 
Weather_temp(x,y)  → WeatherInfo(x) & Temperature(y)  → 
Weather_temp (x,y) & Weather_temp (x,z) → y=z 
Weather_cond(x,y) → WeatherInfo(x) & Precipitation (y)  → 
Weather_cond (x,y) & Weather_cond (x,z) → y=z 
Weather_time(x,y)  → WeatherInfo(x) & Time(y)  → 
Wather_time (x,y) & Weather_time (x,z) → y=z 
Connections 
Flight_location(x,y) = Flight(x) & Location(y) 
Location_weather(x,y) = Location(x) & Weather(y) 
Flight_weather(x,y,z) = Flight(x) & Weather(y) & Time(z) 
Derived classes 
destFlight(y) == ∃x  Flight_location(x,y) 
destFlight(y) → Location(y) 
arrTimeFlight(y) == ∃x Flight_time(x,y) 
arrTimeFlight (y) → ArrivalTime(y) 
locWeather(x,y) == ∃z Weather_coordinates(z,x,y) 
locWeather(x,y) → WeatherInfo(z) 
numFlight(y) == ∃x Flight_fnumber(x,y) 
numFlight(y) → FlightNumber(y) 
longCoordinates(y) == ∃x
∀
  Location_coordinates(x,y,z) 
longCoordinates(y) → Longitude(y) 
latCoordinates(z) == ∃x
∀
 Location_coordinates(x,y,z) 
latCoordinates(z) → Latitude(z) 
longWeather(y) == ∃x
∀
 Weather_coordinates(x,y,z) 
longWeather(y) → Longitude(y) 
latWeather(z) == ∃x
∀
 Weather_coordinates(x,y,z) 
latWeather(z) →Latitude(y) 
condWeather(y) == ∃x Weather_cond(x,y) 
condWeather(y) → Precipitation(y) 
tempWeather(y) == ∃x Weather_temp(x,y) 
tempWeather(y) → Temperature(y) 
timeWeather(y) == ∃x Flight_time(x,y) 
timeWeather (y) → Time(y) 
Weather_coordinates(a,x,y) & Weather_time(a,z) & 
Weather_cond(a,i) & Weather_temp(a,j) & (y <= -
160) & (y >= -34) 
It is required to build process, which returns 
information about weather conditions in the 
aircraft’s destination by the flight number (see 
Fig.5).  
CompositionofWeb-servicesBasedonSemanticDescription
127